
e9I/O Systems

9.1 INTRODUCTION

Input/Output (I/O) systems are used to connect a computer with external
devices called peripherals. In a personal computer, the devices typically
include keyboards, monitors, printers, and wireless networks. In
embedded systems, devices could include a toaster’s heating element,
a doll’s speech synthesizer, an engine’s fuel injector, a satellite’s solar
panel positioning motors, and so forth. A processor accesses an I/O device
using the address and data busses in the same way that it accesses
memory.

This chapter provides concrete examples of I/O devices. Section 9.2 shows
the basic principles of interfacing an I/O device to a processor and accessing it
from a program. Section 9.3 examines I/O in the context of embedded
systems, showing how to use an ARM-based Raspberry Pi single-board com-
puter to access on-board peripherals including general-purpose, serial, and
analog I/O as well as timers. Section 9.4 gives examples of interfacing with
other common devices such as character LCDs, VGA monitors, Bluetooth
radios, and motors. Section 9.5 describes bus interfaces and illustrates the
popular AHB-Lite bus. Section 9.6 surveys the major I/O systems used in PCs.

9.2 MEMORY-MAPPED I/O

Recall from Section 6.5.1 that a portion of the address space is dedicated
to I/O devices rather than memory. For example, suppose that physical
addresses in the range 0x20000000 to 0x20FFFFFF are used for I/O.
Each I/O device is assigned one or more memory addresses in this range.
A store to the specified address sends data to the device. A load receives
data from the device. This method of communicating with I/O devices is
called memory-mapped I/O.

In a systemwith memory-mapped I/O, a load or store may access either
memory or an I/O device. Figure e9.1 shows the hardware needed to sup-
port two memory-mapped I/O devices. An address decoder determines
which device communicates with the processor. It uses the Address and
MemWrite signals to generate control signals for the rest of the hardware.
The ReadData multiplexer selects between memory and the various I/O
devices. Write-enabled registers hold the values written to the I/O devices.
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Figure e9.1 Support hardware for memory-mapped I/O

Example e9.1 COMMUNICATING WITH I/O DEVICES

Suppose I/O Device 1 in Figure e9.1 is assigned the memory address 0x20001000.
Show the ARM assembly code for writing the value 7 to I/O Device 1 and for
reading the output value from I/O Device 1.

Solution: The following assembly code writes the value 7 to I/O Device 1.

MOV R1, #7
LDR R2, = ioadr
STR R1, [R2]

ioadr DCD 0x20001000

The address decoder asserts WE1 because the address is 0x20001000 and
MemWrite is TRUE. The value on the WriteData bus, 7, is written into the
register connected to the input pins of I/O Device 1.

To read from I/O Device 1, the processor executes the following assembly code.

LDR R1, [R2]

The address decoder sets RDsel1:0 to 01, because it detects the address
0x20001000 and MemWrite is FALSE. The output of I/O Device 1 passes
through the multiplexer onto the ReadData bus and is loaded into R1 in
the processor.
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Some architectures, notably x86,
use specialized instructions
instead of memory-mapped I/O
to communicate with I/O devices.
These instructions are of the
following form, where device1
and device2 are the unique IDs
of the peripheral device:

LDRIO R1, device1
STRIO R2, device2

This type of communication
with I/O devices is called
programmed I/O.

Approximately $19B of
microcontrollers were sold in
2014, and the market is forecast
to reach $27B by 2020. The
average price of a microcontroller
is less than $1, and an 8-bit
microcontroller can be integrated
on a system-on-chip for less than a
penny. Microcontrollers have
become ubiquitous and nearly
invisible, with an estimated 150 in
each home and 50 in each
automobile in 2010. The 8051 is a
classic 8-bit microcontroller
originally developed by Intel in
1980 and now sold by a host of
manufacturers. Microchip’s
PIC16 and PIC18-series are 8-bit
market leaders. The Atmel AVR
series ofmicrocontrollers has been
popularized among hobbyists as
the brain of the Arduino platform.
Among 32-bit microcontrollers,
Renesas leads the overall market.
Freescale, Samsung, Texas
Instruments, and Infineon are
other major microcontroller
manufacturers. ARM processors
are found in nearly all smart
phones and tablets today and are
usually part of a system-on-chip
containing the multi-core
applications processor, a graphics
processingunit, and extensive I/O.

The addresses associated with I/O devices are often called I/O
registers because they may correspond with physical registers in the I/O
device like those shown in Figure e9.1.

Software that communicates with an I/O device is called a device
driver. You have probably downloaded or installed device drivers for
your printer or other I/O device. Writing a device driver requires detailed
knowledge about the I/O device hardware including the addresses and
behavior of the memory-mapped I/O registers. Other programs call func-
tions in the device driver to access the device without having to under-
stand the low-level device hardware.

9.3 EMBEDDED I/O SYSTEMS

Embedded systems use a processor to control interactions with the physical
environment. They are typically built around microcontroller units
(MCUs) which combine a microprocessor with a set of easy-to-use periph-
erals such as general-purpose digital and analog I/O pins, serial ports,
timers, etc. Microcontrollers are generally inexpensive and are designed
to minimize system cost and size by integrating most of the necessary com-
ponents onto a single chip. Most are smaller and lighter than a dime, con-
sume milliwatts of power, and range in cost from a few dimes up to several
dollars. Microcontrollers are classified by the size of data that they operate
upon. 8-bit microcontrollers are the smallest and least expensive, while
32-bit microcontrollers provide more memory and higher performance.

For the sake of concreteness, this section will illustrate embedded system
I/O in the context of a real system. Specifically, we will focus on the popular
and inexpensive Raspberry Pi board, which contains a Broadcom BCM2835
system-on-chip (SoC) with a 700 MHz 32-bit ARM1176JZ-F processor
implementing the ARMv6 instruction set. The principles in each subsection
will be followed by specific examples that run on the Pi. All of the examples
have been tested on a Pi running NOOBS Raspbian Linux in 2014.

Figure e9.2 shows a photograph of a Raspberry Pi Model B + board,
which is a complete Linux computer about the size of a credit card that
sells for $35. The Pi draws up to 1 A from a 5 V USB power supply. It
has 512 MB of onboard RAM and an SD card socket for a memory card
that contains the operating system and user files. Connectors provide
video and audio output, USB ports for a mouse and keyboard, and
an Ethernet (Local Area Network) port, along with 40 general-purpose
I/O (GPIO) pins that are the main subject of this chapter.

While the BCM2835 SoC has many capabilities beyond those in a
typical inexpensive microcontroller, the general-purpose I/O is very similar.
This chapter begins by describing the BCM2835 on the Raspberry Pi and
describing a device driver for memory-mapped I/O. The remainder of this
chapter will illustrate how embedded systems perform general-purpose
digital, analog, and serial I/O. Timers are also commonly used to generate
or measure precise time intervals.
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9 . 3 . 1 BCM2835 System-on-Chip

The BCM2835 SoC is a powerful yet inexpensive chip designed by Broad-
com for mobile devices and other multimedia applications. The SoC
includes an ARM microprocessor known as the applications processor,
a VideoCore processor for graphics, video, and cameras, and many I/O
peripherals. The BCM2835 is packaged in a plastic ball grid array with
tiny solder balls underneath; it is best soldered by a robot that aligns
the package to matching copper pads on a printed circuit board and
applies heat. Broadcom does not publish a complete datasheet, but an
abbreviated datasheet is available on the Raspberry Pi site describing
how to access peripherals from the ARM processor. The datasheet
describes many features and I/O registers that are omitted in this chapter
for simplicity.

www.raspberrypi.org/documentation/hardware/

Figure e9.3 shows a simplified schematic of the Raspberry Pi model
board. The board receives 5 V power from a USB power supply and
regulators produce 3.3, 2.5, and 1.8 V levels for I/O, analog, and

Figure e9.2 Raspbery Pi Model B+

Eben Upton (1978-) is the
architect of the Raspberry Pi
and a founder of the
Raspberry Pi Foundation. He
received his Bachelor’s and
Ph.D. from the University of
Cambridge before joining
Broadcom Corporation as a
chip architect.

(Photograph © Eben Upton.
Reproduced with permission.)

The Raspberry Pi was
developed in 2011-12 by the
nonprofit Raspberry Pi
Foundation in the UK to
promote teaching computer
science. Built around the brain
of an inexpensive smartphone,
the computer has become
wildly popular, selling more
than 3 million units by 2014.
The name pays homage to
early home computers
including Apple, Apricot, and
Tangerine. Pi is derived from
Python, a programming
language often used in
education. Documentation
and purchasing information
can be found at

raspberrypi.org
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miscellaneous functions. The BCM2835 also has an internal switching
regulator that produces a variable lower voltage for the power-efficient
SoC. The BCM2835 connects to a USB/Ethernet controller and also
directly outputs video. It also has 54 configurable I/O signals but, for
space reasons, only a fraction of these are accessible to the user via
header pins. The header also provides 3.3 and 5 V and ground to conve-
niently power small devices attached to the Pi, but the maximum total
current is 50 mA from 3.3 V and ~300 mA from 5 V. The model B and
B + are similar, but B + boosts the number of I/O header pins from
26 to 40 and the number of USB ports from 2 to 4. Various cables
including the Adafruit Pi Cobbler are available to connect these header
pins to a breadboard.

The Raspberry Pi uses an SD card as a Flash memory disk. The card
is typically preloaded with Raspbian Linux, a small version of Linux
that fits on an 8 GB SD card. You can work with the Pi either by attach-
ing an HDMI monitor and USB mouse and keyboard to turn it into a
full computer, or by connecting to it from another computer over an
Ethernet cable.

USB
Power
Jack

5V Vbat

VDD_IO

VDD_Analog

BCM2835
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USB 2.0
x2 or x4

Ethernet
10/100

Crystal
Oscillator

GPIO 3.3V
SDA1/GPIO2
SCL1/GPIO3
GCLK/GPIO4

GND
GPIO17
GPIO27
GPIO22

MOSI/GPIO10
3.3V

MISO/GPIO9
SCLK/GPIO11

GND

5V
5V
GND
GPIO14/TXDO
GPIO15/RXDO
GPIO18/PWM0
GND
GPIO23

GND
GPIO24

GPIO25
GPIO8/SPI_CE0
GPIO7/SPI_CE1

I/O header

Stereo
Audio
Jack

PWM0/GPIO40

PWM1/GPIO45

HDMI Video
RCA Video

SD Card
Camera Link

GPIO47
ACT_LED

1

ID_SD
GPIO5

GPIO13
GPIO6

GPIO19
GPIO26

GND

ID_SC
GND

GND
GPIO12

GPIO16
GPIO20
GPIO21

Model B+
Only

2

26

40

3.3V
Regulator

2.5V
Regulator

1.8V
Regulator

Figure e9.3 Raspberry PI I/O schematic
The Raspberry Pi continues to
advance and by the time you read
this, a newer model might be
available with a more advanced
processor and a different set of
embedded I/O. Nevertheless, the
same principles will apply, and
the principles also apply to other
types of microcontrollers. You
can expect to find the same types
of I/O peripherals. You will need
to consult the data sheet to look
up the mapping between the
peripheral, the pin on the chip,
and the pin on the board, as well
as the addresses of the memory-
mapped I/O registers associated
with each peripheral. You’ll write
configuration registers to
initialize the peripheral and read
and write data registers to access
the peripheral.
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9 . 3 . 2 Device Drivers

Programmers can manipulate I/O devices directly by reading or writing
the memory-mapped I/O registers. However, it is better programming
practice to call functions that access the memory-mapped I/O. These func-
tions are called device drivers. Some of the benefits of using device drivers
include:

▶ The code is easier to read when it involves a clearly named function
call rather than a write to bit fields at an obscure memory address.

▶ Somebody who is familiar with the deep workings of the I/O devices
can write the device driver and casual users can call it without having
to understand the details.

▶ The code is easier to port to another processor with different memory
mapping or I/O devices because only the device driver must change.

▶ If the device driver is part of the operating system, the OS can control
access to physical devices shared among multiple programs running
on the system and can manage security (e.g. so a malicious program
can’t read the keyboard while you are typing your password into a
web browser).

This section will develop a simple device driver called EasyPIO to
access BCM2835 devices so that you can understand what is happening
under the hood in a device driver. Casual users are likely to prefer
WiringPi, an open-source I/O library for the Pi, which has functions
similar to but not exactly matching those in EasyPIO.

The memory-mapped I/O on the BCM2835 is found at physical
addresses 0x20000000-0x20FFFFFF. The physical base addresses used
by various peripherals are summarized in Table e9.1. Peripherals have
multiple I/O registers starting at their base address. For example, reading
address 0x20200034 will return the values of GPIO (general-purpose I/O)
pins 31:0. The peripherals in bold will be discussed further in subsequent
sections.

The Raspberry Pi typically runs a Linux operating system using vir-
tual memory, which further complicates memory-mapped I/O. Loads
and stores in a program refer to virtual addresses, not physical, so a pro-
gram cannot immediately access memory-mapped I/O. Instead, it must
begin by asking the operating system to map the physical addresses of
interest to the program’s virtual address space. The pioInit function
from EasyPIO in Example e9.2 performs this task. The code involves
some heavy duty pointer manipulation in C. The general principle is to
open /dev/mem, which is a Linux method of accessing physical memory.
Then the mmap function is used to set gpio as a pointer to physical address
0x20200000, the beginning of the GPIO registers. The pointer is declared

As this book was going to press,
the Raspberry Pi Foundation
released the Raspberry Pi 2
Model B with a BCM2836 SoC
containing a quad Cortex-A7
processor and 1 GB of RAM.
The Pi 2 runs about 6 times
faster than the B+ but has the
same I/O as the B+ described in
this chapter. The peripheral base
address has moved from
0x20000000 to 0x3F000000.
An updated EasyPIO supporting
both models is posted to the
textbook website.

EasyPIO and the code examples
in this chapter can be downloaded
from the textbook website: http://
booksite.elsevier.com/
9780128000564. The WiringPi
driver and documentation is at
wiringpi.com.

Caution: connecting 5 V to one
of the 3.3 V I/Os will damage the
I/O and possibly the entire
Raspberry Pi. If you probe the
I/O pins with a voltmeter, beware
that you do not accidentally
make contact between the 5 V
pins and a nearby pin!

Pin 1 of the I/O header is
labeled in Figure e9.3. When
you make connections, be sure
you have properly identified it
and aren’t rotated by 180
degrees. This is an easy
mistake that could cause you
to accidentally damage the Pi.

Caution: the I/O connector
pinout has changed between
Raspberry Pi board revisions.
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volatile, telling the compiler that the memory-mapped I/O value might
change on its own, so the program should always read the register directly
instead of relying on an old value. GPLEV0 accesses the I/O register 13
words past GPIO, e.g. at 0x20200034, which contains the values of
GPIO 31:0. For brevity, this example omits error checking that takes
place in the actual EasyPIO library. Subsequent subsections define more
registers and functions to access I/O devices.

Table e9.1 Memory mapped I/O addresses

Physical Base Address Peripheral

0x20003000 System Timer

0x2000B200 Interrupts

0x2000B400 ARM Timer

0x20200000 GPIO

0x20201000 UART0

0x20203000 PCM Audio

0x20204000 SPI0

0x20205000 I2C Master #1

0x2020C000 PWM

0x20214000 I2C Slave

0x20215000 miniUART1, SPI1, SPI2

0x20300000 SD Card Controller

0x20804000 I2C Master #2

0x20805000 I2C Master #3

Example e9.2 INITIALIZING MEMORY-MAPPED I/O

#include <sys/mman.h>
#define BCM2835_PERI_BASE 0x20000000
#define GPIO_BASE (BCM2835_PERI_BASE + 0x200000)
volatile unsigned int *gpio; //Pointer to base of gpio
#define GPLEV0 (* (volatile unsigned int *) (gpio + 13))
#define BLOCK_SIZE (4*1024)

For security reasons, Linux
only grants the superuser
access to memory-mapped
hardware. To run a program
as the superuser, type sudo
before the Linux command.
The next section will give an
example.
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9 . 3 . 3 General-Purpose Digital I/O

General-purpose I/O (GPIO) pins are used to read or write digital signals.
For example, Figure e9.4 shows three light-emitting diodes (LEDs) and
three switches connected to six GPIO pins. The LEDs are wired to glow
when driven with a 1 and to turn off when driven with a 0. The cur-
rent-limiting resistors are placed in series with the LEDs to set the bright-
ness and avoid overloading the current capability of the GPIO. The
switches are wired to produce a 1 when closed and a 0 when open. The
schematic indicates the pin name as well as the corresponding header
pin number.

At a minimum, any GPIO pin requires registers to read input
pin values, write output pin values, and set the direction of the pin.
In many embedded systems, the GPIO pins can be shared with one
or more special-purpose peripherals, so additional configuration regis-
ters are necessary to determine whether the pin is general or special-
purpose. Furthermore, the processor may generate interrupts when
an event such as a rising or falling edge occurs on an input pin, and con-
figuration registers may be used to specify the conditions for an
interrupt.

Recall that the BCM2835 has 54 GPIOs. They are controlled by the
GPFSEL, GPLEV, GPSET, and GPCLR registers. Figure e9.5 shows a
memory map for these GPIO registers. GPFSEL5…0 determine whether
each pin is a general-purpose input, output, or special-purpose I/O. Each
of these function select registers uses 3 bits to specify each pin and thus

void pioInit(){
int mem_fd;
void *reg_map;

// /dev/mem is a psuedo-driver for accessing memory in Linux
mem_fd = open("/dev/mem", O_RDWR|O_SYNC);
reg_map = mmap(

NULL, // Address at which to start local mapping (null = don't-care)
BLOCK_SIZE, // 4KB mapped memory block
PROT_READ|PROT_WRITE, // Enable both reading and writing to the mapped memory
MAP_SHARED, // Nonexclusive access to this memory
mem_fd, // Map to /dev/mem
GPIO_BASE); // Offset to GPIO peripheral

gpio = (volatile unsigned *)reg_map;
close(mem_fd);

}

GPIO9 21

GPIO8 24

GPIO7 26

GPIO4 7

GPIO3 5

GPIO2 3

Raspberry Pi

LEDs

3.3 V

R
 = 1K

Ω

R
 = 330Ω

Switches

Figure e9.4 LEDs and switches
connected to GPIO pins

In the context of bit
manipulation, “setting” means
writing to 1 and “clearing”
means writing to 0.
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each 32-bit register controls 10 GPIOs as given in Table e9.2 and six
GPFSEL registers are necessary to control all 54 GPIOs. For example,
GPIO13 is configured by GPFSEL1[11:9]. The configurations are sum-
marized in Table e9.3; many pins have multiple special-purpose functions
that will be discussed in subsequent sections; ALT0 is most commonly
used. Reading GPLEV1…0 returns the values of the pins. For example,
GPIO14 is read as GPLEV0[14] and GPIO34 is read as GPLEV1[2].
The pins cannot be directly written; instead, bits are forced high or low
by asserting the corresponding bit of GPSET1…0 or GPCLR1…0. For
example, GPIO14 is forced to 1 by writing GPSET0[14] = 1 and forced
to 0 by writing GPCLR0[14] = 1.

The BCM2835 datasheet does not specify the logic levels or output
current capability of the GPIOs. However, users have determined empiri-
cally that one should not try to draw more than 16 mA from any single
I/O or 50 mA total from all the I/Os. Thus, a GPIO pin is suitable for
driving a small LED but not a motor. The I/Os are generally compatible
with other 3.3 V chips but are not 5 V-tolerant.

Table e9.2 GPFSEL register bit field to GPIO mapping

GPFSEL0 GPFSEL1 GPFSEL2 GPFSEL3 GPFSEL4 GPFSEL5

[2:0] GPIO0 GPIO10 GPIO20 GPIO30 GPIO40 GPIO50

[5:3] GPIO1 GPIO11 GPIO21 GPIO31 GPIO41 GPIO51

[8:6] GPIO2 GPIO12 GPIO22 GPIO32 GPIO42 GPIO52

[11:9] GPIO3 GPIO13 GPIO23 GPIO33 GPIO43 GPIO53

[14:12] GPIO4 GPIO14 GPIO24 GPIO34 GPIO44

[17:15] GPIO5 GPIO15 GPIO25 GPIO35 GPIO45

[20:18] GPIO6 GPIO16 GPIO26 GPIO36 GPIO46

[23:21] GPIO7 GPIO17 GPIO27 GPIO37 GPIO47

[26:24] GPIO8 GPIO18 GPIO28 GPIO38 GPIO48

[29:27] GPIO9 GPIO19 GPIO29 GPIO39 GPIO49

Table e9.3 GPFSEL configuration

GPFSEL
Pin

Function

000 Input

001 Output

010 ALT5

011 ALT4

100 ALT0

101 ALT1

110 ALT2

111 ALT3

0x20200000 GPFSEL0
GPFSEL1
GPFSEL2
GPFSEL3
GPFSEL4
GPFSEL5

GPSET0
GPSET1

GPCLR0
GPCLR1

GPLEV0
GPLEV1

0x20200004
0x20200008
0x2020000C
0x20200010
0x20200014
0x20200018
0x2020001C
0x20200020
0x20200024
0x20200028
0x2020002C
0x20200030
0x20200034
0x20200038

...

...

Figure e9.5 GPIO memory map
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The BCM2835 has unusually
complex GPIO access. Some
microcontrollers use a single
register to configure whether
each pin is input or output and
another register to read and
write the pins.

Example e9.3 GPIO FOR SWITCHES AND LEDS

Enhance EasyPIO with pinMode, digitalRead, and digitalWrite functions to
configure a pin’s direction and read or write it. Write a C program using these
functions to read the three switches and turn on the corresponding LEDs using
the hardware in Figure e9.4.

Solution: The additional EasyPIO code is given below. Because multiple registers
are used to control the I/O, the functions must compute which register to access
and what bit offset to use within the register. pinMode then clears the 0 bits and
sets the 1 bits for the intended 3-bit function. digitalWrite handles writing
either 1 or 0 by using GPSET or GPCLR. digitalRead pulls out the value of
the desired pin and masks off the others.

#define GPFSEL ((volatile unsigned int *) (gpio + 0))
#define GPSET ((volatile unsigned int *) (gpio + 7))
#define GPCLR ((volatile unsigned int *) (gpio + 10))
#define GPLEV ((volatile unsigned int *) (gpio + 13))
#define INPUT 0
#define OUTPUT 1
...
void pinMode(int pin, int function) {

int reg = pin/10;
int offset = (pin%10)*3;
GPFSEL[reg] &= ~((0b111 & ~function) << offset);
GPFSEL[reg] |= ((0b111 & function) << offset);

}

void digitalWrite(int pin, int val) {
int reg = pin / 32;
int offset = pin % 32;

if (val) GPSET[reg] = 1 << offset;
else GPCLR[reg] = 1 << offset;

}

int digitalRead(int pin) {
int reg = pin / 32;
int offset = pin % 32;

return (GPLEV[reg] >> offset) & 0x00000001;
}

The program to read switches and write LEDs is given below. It initializes GPIO
access, then sets pins 2–4 as inputs for the switches and pins 7–9 as outputs for
the LEDs. It then continuously reads the switches and writes their values to the
corresponding LEDs.

#include "EasyPIO.h"

void main(void) {
pioInit();
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9 . 3 . 4 Serial I/O

If a microcontroller needs to send more bits than the number of free GPIO
pins, it must break the message into multiple smaller transmissions. In
each step, it can send either one bit or several bits. The former is called
serial I/O and the latter is called parallel I/O. Serial I/O is popular because
it uses few wires and is fast enough for many applications. Indeed, it is so
popular that many standards for serial I/O have been established and
microcontrollers offer dedicated hardware to easily send data via these
standards. This section describes the Serial Peripheral Interface (SPI) and
Universal Asynchronous Receiver/Transmitter (UART) standard serial
interfaces.

Other common serial standards include Inter-Integrated Circuit
(I2C), Universal Serial Bus (USB), and Ethernet. I2C (pronounced “I
squared C”) is a 2-wire interface with a clock and a bidirectional data
pin; it is used in a fashion similar to SPI. USB and Ethernet are more
complex, high-performance standards described in Sections 9.6.1 and
9.6.4, respectively. All five of these standards are supported on the
Raspberry Pi.

// Set GPIO 4:2 as inputs
pinMode(2, INPUT);
pinMode(3, INPUT);
pinMode(4, INPUT);

// Set GPIO 9:7 as an output
pinMode(7, OUTPUT);
pinMode(8, OUTPUT);
pinMode(9, OUTPUT);

while (1) { // Read each switch and write corresponding LED
digitalWrite(7, digitalRead(2));
digitalWrite(8, digitalRead(3));
digitalWrite(9, digitalRead(4));

}
}

Assuming the program is in a file named dip2led.c and that EasyPIO.h is in the
same directory, you can compile and run the program using the following com-
mands on the Raspberry Pi command line .gcc is the C compiler. Note that sudo
is required so that the program can access the protected I/O memory. To stop a
running program, press Ctrl-C.

gcc dip2led.c –o dip2led
sudo ./dip2led
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9.3.4.1 Serial Peripheral Interface (SPI)
SPI (pronounced “S-P-I”) is a simple synchronous serial protocol that is
easy to use and relatively fast. The physical interface consists of three
pins: Serial Clock (SCK), Master Out Slave In (MOSI, also known as
SDO), and Master In Slave Out (MISO, also known as SDI). SPI connects
a master device to a slave device, as shown in Figure e9.6(a). The master
produces the clock. It initiates communication by sending a series of clock
pulses on SCK. If it wants to send data to the slave, it puts the data on
MOSI, starting with the most significant bit. The slave may simulta-
neously respond by putting data on MISO. Figure e9.6(b) shows the SPI
waveforms for an 8-bit data transmission. Bits change on the falling edge
of SCK and are stable to sample on the rising edge. The SPI interface may
also send an active-low chip enable to alert the receiver that data is
coming.

The BCM2835 has three SPI master ports and one slave port. This
section describes SPI Master Port 0, which is readily accessible on the
Raspberry Pi on GPIO pins 11:9. To use these pins for SPI rather than
GPIO, their GPFSEL must be set to ALT0. The Pi must then configure
the port. When the Pi writes to the SPI, the data is transmitted serially
to the slave. Simultaneously, data received from the slave is collected
and the Pi can read it when the transfer is complete.

Master

SCK

MOSI

MISO

SCK

MOSI

MISO

Slave

(a)

SCK

(b)

MOSI

MISO

bit 7

bit 7

bit 6

bit 6

bit 5

bit 5

bit 4

bit 4

bit 3

bit 3

bit 2

bit 2

bit 1

bit 1

bit 0

bit 0

CESPI_CE0

SPI_CE0

(optional)

Figure e9.6 SPI connection and waveforms

SPI always sends data in both
directions on each transfer. If the
system only needs unidirectional
communication, it can ignore the
unwanted data. For example, if
the master only needs to send
data to the slave, the byte
received from the slave can be
ignored. If the master only needs
to receive data from the slave, it
must still trigger the SPI
communication by sending an
arbitrary byte that the slave will
ignore. It can then read the data
received from the slave. The SPI
clock only toggles while the
master is transmitting data.
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SPI Master Port 0 is associated with three registers, given in the mem-
ory map in Figure e9.7. SPI0CS is the control register. It is used to turn
the SPI on and set attributes such as the polarity of the clock. Table
e9.4 lists the names and functions of some of the bits in SPI0CS that are
relevant to this discussion. All have a default value of 0 on reset. Most
of the functions, such as chip selects and interrupts, are not used in this
section but can be found in the datasheet. SPI0FIFO is written to transmit
a byte and read to get the byte received back. SPI0CLK configures the SPI
clock frequency by dividing the 250 MHz peripheral clock by a power of
two specified in the register. Thus, the SPI clock frequency is summarized
in Table e9.5.

0x20204000 SPI0CS
SPI0FIFO
SPI0CLK

0x20204004
0x20204008

...

...

Figure e9.7 SPI Master Port 0
registers

Table e9.4 SPI0CS register fields

Bit Name Function Meaning for 0 Meaning for 1

16 DONE Transfer Done Transfer in
progress

Transfer complete

7 TA Transfer Active SPI disabled SPI enabled

3 CPOL Clock Polarity Clock idles low Clock idles high

2 CPHA Clock Phase First SCK
transition at

middle of data bit

First SCK
transition at beginning

of data bit

Table e9.5 SPI0CLK frequencies

SPI0CLK

SPI
Frequency
(kHz)

2 125000

4 62500

8 31250

16 15625

32 7812

64 3906

128 1953

256 976

512 488

1024 244

2048 122

If the frequency is too high
(>~1 MHz on a breadboard or
tens of MHz on an unterminated
printed circuit board), the SPI
may become unreliable due to
reflections, crosstalk, or other
signal integrity issues.

Example e9.4 SENDING AND RECEIVING BYTES OVER SPI

Design a system to communicate between a Raspberry Pi master and an FPGA
slave over SPI. Sketch a schematic of the interface. Write the C code for the Pi
to send the character ‘A’ and receive a character back. Write HDL code for an
SPI slave on the FPGA. How could the slave be simplified if it only needs to
receive data?

Solution: Figure e9.8 shows the connection between the devices using SPI
Master Port 0. The pin numbers are obtained from the component datasheets
(e.g., Figure e9.3). Notice that both the pin numbers and signal names are shown
on the diagram to indicate both the physical and logical connectivity. When the
SPI is enabled, these pins cannot be used for GPIO.
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The following code from EasyPIO.h is used to initialize the SPI and to send and
receive a character. The code to set up the memory map and define the register
addresses is similar to that for GPIO and is not reprinted here.

void spiInit(int freq, int settings) {
pinMode(8, ALT0); // CEOb
pinMode(9, ALT0); // MISO
pinMode(10, ALT0); // MOSI
pinMode(11, ALT0); // SCLK

SPI0CLK = 250000000/freq; // Set SPI clock divider to desired
freq

SPI0CS = settings;
SPI0CSbits.TA = 1; // Turn SPI on

}

char spiSendReceive(char send){
SPI0FIFO = send; // Send data to slave
while (!SPI0CSbits.DONE); // Wait until SPI complete
return SPI0FIFO; // Return received data

}

The C code below initializes the SPI and then sends and receives a character. It sets
the SPI clock to 244 kHz.

#include "EasyPIO.h"

void main(void) {
char received;

pioInit();
spiInit(244000, 0); //Initialize the SPI:

// 244 kHz clk, default settings
received = spiSendReceive('A'); // Send letter A and receive byte

}

The HDL code for the FPGA is listed below. Figure e9.9 shows a block dia-
gram and timing. The FPGA uses a shift register to hold the bits that have
been received from the master and the bits that remain to be sent to the master.

Master

SCK / GPIO11

MOSI / GPIO10

MISO /  GPIO9

Slave

GND GND

Raspberry Pi Altera Cyclone III FPGA
EP3C5E144C8

23

19

21

sck

mosi

miso

1

2

3
Figure e9.8 SPI connection
between Pi and FPGA
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On the first rising sck edge after reset and each 8 cycles thereafter, a new byte
from d is loaded into the shift register. On each subsequent cycle, a bit is shifted
in on mosi and a bit is shifted out of miso. miso is delayed until the falling
edge of sck so that it can be sampled by the master on the next rising edge. After
8 cycles, the byte received can be found in q.

module spi_slave(input logic sck, // From master
input logic mosi, // From master
output logic miso, // To master
input logic reset, // System reset
input logic [7:0] d, // Data to send
output logic [7:0] q); // Data received

logic [2:0] cnt;
logic qdelayed;

// 3-bit counter tracks when full byte is transmitted
always_ff @(negedge sck, posedge reset)

if (reset) cnt = 0;
else cnt = cnt + 3’b1;

sck

= 0
3counter

cnt

reset sck
8

q[7:0]
mosi

7

sck

d[7:0]
[6:0]

[7]

[7]

[6:0]

miso

qdelayed

reset

d

sck

mosi

miso

q

cnt 0 1 2 3 4 5 6 7 0

T7 T6 T5 T4 T3 T2 T1 T0

D7 D6 D5 D4 D3 D2 D1 D0

D7:0

D6:0, T7 D5:0, T7:6 D4:0, T7:5 D3:0, T7:4 D2:0, T7:3 D1:0, T7:2 D0, T7:1 T7:0

Figure e9.9 SPI slave circuitry and timing
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SPI ports are highly configurable so that they can talk to a wide variety
of serial devices. Unfortunately, this leads to the possibility of incorrectly
configuring the port and garbling the data transmission. Sometimes it
is necessary to change the configuration bits to communicate with a
device that expects different timing. When CPOL= 1, SCK is inverted.
When CPHA= 1, the clocks toggle half a cycle earlier relative to the
data. These modes are shown in Figure e9.10. Be aware that different SPI
products may use different names and polarities for these options; check
the waveforms carefully for your device. It can also be helpful to examine

// Loadable shift register
// Loads d at the start, shifts mosi into bottom on each step
always_ff @(posedge sck)

q <= (cnt == 0) ? {d[6:0], mosi} : {q[6:0], mosi};

// Align miso to falling edge of sck
// Load d at the start
always_ff @(negedge sck)

qdelayed = q[7];
assign miso = (cnt == 0) ? d[7] : qdelayed;

endmodule

If the slave only needs to receive data from the master, it reduces to a simple shift
register given in the following HDL code.

module spi_slave_receive_only(input logic sck, //From master
input logic mosi,//From master
output logic [7:0] q); //Data received

always_ff @(posedge sck)
q <= {q[6:0], sdi}; // shift register

endmodule

SCK

MOSI / MISO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

CPHA CPOL

0 0

0 1

1 0

1 1

Figure e9.10 SPI clock and data timing configurations
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SCK,MOSI, andMISO on an oscilloscope if you are having communication
difficulties.

9.3.4.2 Universal Asynchronous Receiver/Transmitter (UART)
A UART (pronounuced “you-art”) is a serial I/O peripheral that commu-
nicates between two systems without sending a clock. Instead, the systems
must agree in advance about what data rate to use and must each locally
generate its own clock. Hence, the transmission is asynchronous because
the clocks are not synchronized. Although these system clocks may have a
small frequency error and an unknown phase relationship, the UART
manages reliable asynchronous communication. UARTs are used in pro-
tocols such as RS-232 and RS-485. For example, old computer serial
ports use the RS-232C standard, introduced in 1969 by the Electronics
Industries Associations. The standard originally envisioned connecting
Data Terminal Equipment (DTE) such as a mainframe computer to Data
Communication Equipment (DCE) such as a modem. Although a UART
is relatively slow compared to SPI and prone to misconfiguration issues,
the standards have been around for so long that they remain important
today.

Figure e9.11(a) shows an asynchronous serial link. The DTE sends
data to the DCE over the TX line and receives data back over the RX
line. Figure e9.11(b) shows one of these lines sending a character at a
data rate of 9600 baud. The lines idle at a logic ‘1’ when not in use.
Each character is sent as a start bit (0), 7 or 8 data bits, an optional par-
ity bit, and one or more stop bits (1’s). The UART detects the falling
transition from idle to start to lock on to the transmission at the appro-
priate time. Although seven data bits is sufficient to send an ASCII char-
acter, eight bits are normally used because they can convey an arbitrary
byte of data.

The optional parity bit allows the system to detect if a bit was cor-
rupted during transmission. It can be configured as even or odd; even
parity means that the parity bit is chosen such that the total collection
of data and parity has an even number of 1’s; in other words, the parity
bit is the XOR of the data bits. The receiver can then check if an even
number of 1’s was received and signal an error if not. Odd parity is
the reverse.

Baud rate gives the signaling rate,
measured in symbols per second,
whereas bit rate gives the data
rate, measured in bits per second.
The signaling we’ve discussed in
this text is 2-level signaling,
where each symbol represents a
bit. However, multi-level
signaling can send multiple bits
per symbol; for example, 4-level
signaling sends two bits per
symbol. In that case, the bit rate is
twice the baud rate. In a simple
system like SPI where each
symbol is a bit and each symbol
represents data, the baud rate is
equal to the bit rate. UARTs and
some other signaling conventions
require overhead bits in addition
to the data. For example, a two-
level signaling system that adds
start and stop bits for each 8 bits
of data and operates at a baud
rate of 9600 has a bit rate of
(9600 symbols/second)×(8 bits/
10 symbols)= 7680 bits/second
= 960 characters/second.

TX

RX

DTE

TX

RX

DCE(a)

(b)
Idle Start Stopbit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

1/9600 sec
Figure e9.11 Asynchronous
serial link
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A common choice is 8 data bits, no parity, and 1 stop bit, making a total
of 10 symbols to convey an 8-bit character of information. Hence, signaling
rates are referred to in units of baud rather than bits/sec. For example,
9600 baud indicates 9600 symbols/sec, or 960 characters/sec,. Both systems
must be configured for the appropriate baud rate and number of data,
parity, and stop bits or the data will be garbled. This is a hassle, especially
for nontechnical users, which is one of the reasons that the Universal Serial
Bus (USB) has replaced UARTs in personal computer systems.

Typical baud rates include 300, 1200, 2400, 9600, 14400, 19200,
38400, 57600, and 115200. The lower rates were used in the 1970’s
and 1980’s for modems that sent data over the phone lines as a series
of tones. In contemporary systems, 9600 and 115200 are two of the most
common baud rates; 9600 is encountered where speed doesn’t matter,
and 115200 is the fastest standard rate, though still slow compared to
other modern serial I/O standards.

The RS-232 standard defines several additional signals. The Request
to Send (RTS) and Clear to Send (CTS) signals can be used for hardware
handshaking. They can be operated in either of two modes. In flow
control mode, the DTE clears RTS to 0 when it is ready to accept data
from the DCE. Likewise, the DCE clears CTS to 0 when it is ready to
receive data from the DTE. Some datasheets use an overbar to indicate
that they are active-low. In the older simplex mode, the DTE clears RTS
to 0 when it is ready to transmit. The DCE replies by clearing CTS when
it is ready to receive the transmission.

Some systems, especially those connected over a telephone line, also
use Data Terminal Ready (DTR), Data Carrier Detect (DCD), Data Set
Ready (DSR), and Ring Indicator (RI) to indicate when equipment is con-
nected to the line.

The original standard recommended a massive 25-pin DB-25 connector,
but PCs streamlined to a male 9-pin DE-9 connector with the pinout
shown in Figure e9.13(a). The cable wires normally connect straight across
as shown in Figure e9.13(b). However, when directly connecting two DTEs,
a null modem cable shown in Figure e9.13(c) may be needed to swap RX
and TX and complete the handshaking. As a final insult, some connectors
are male and some are female. In summary, it can take a large box of cables
and a certain amount of guess-work to connect two systems over RS-232,
again explaining the shift to USB. Fortunately, embedded systems typically
use a simplified 3- or 5-wire setup consisting of GND, TX, RX, and possibly
RTS and CTS.

RS-232 represents a 0 electrically with 3 to 15 V and a 1 with −3 to
−15 V; this is called bipolar signaling. A transceiver converts the digital
logic levels of the UART to the positive and negative levels expected by
RS-232, and also provides electrostatic discharge protection to protect
the serial port from getting zapped when the user plugs in a cable. The

In the 1950s through 1970s,
early hackers calling themselves
phone phreaks learned to control
the phone company switches by
whistling appropriate tones.
A 2600 Hz tone produced by a
toy whistle from a Cap’n Crunch
cereal box e9.12 could be
exploited to place free long-
distance and international calls.

Figure e9.12 Cap’n Crunch
Bosun Whistle

(Photograph by Evrim Sen,
reprinted with permission.)

Handshaking refers to the
negotiation between two
systems; typically, one system
signals that it is ready to send
or receive data, and the other
system acknowledges that
request.
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MAX3232E is a popular transceiver compatible with both 3.3 and 5 V
digital logic. It contains a charge pump that, in conjunction with external
capacitors, generates ±5 V outputs from a single low-voltage power sup-
ply. Some serial peripherals intended for embedded systems omit the
transceiver and just use 0 V for a 0 and 3.3 or 5 V for a 1; check the
datasheet!

The BCM2835 has two UARTs named UART0 and UART1. Either
can be configured to communicate on pins 14 and 15, but UART0 is
more fully featured and is described here. To use these pins for UART0
rather than GPIO, their GPFSEL must be set to ALT0. As with SPI, the
Pi must first configure the port. Unlike SPI, reading and writing can occur
independently because either system may transmit without receiving and
vice versa. UART0’s registers are shown in Figure e9.14.

To configure the UART, first set the baud rate. The UART has an
internal 3 MHz clock that must be divided down to produce a clock that
is 16x the desired baud rate. Hence, the appropriate divisor, BRD, is

BRD = 3000000/ð16×baud rateÞ
BRD is represented with a 16-bit integer portion in UART_IBRD and a 6-bit
fractional portion in UART_FBRD: BRD= IBRD+ FBRD/64. Table e9.6
shows these settings for popular baud rates.1

0x20201000 UART_DR

...

...
0x20201024 UART_IBRD

UART_FBRD
UART_LCRH

UART_CR

...

0x20201028

0x2020102C

0x20201030

Figure e9.14 UART0 registers

Table e9.6 BRD settings

Target
Baud Rate UART_IBRD UART_FBRD

Actual
Baud Rate Error (%)

300 625 0 300 0

1200 156 16 1200 0

2400 78 8 2400 0

9600 19 34 9600 0

19200 9 49 19200 0

38400 4 56 38461 0.16

57600 3 16 57692 0.16

115200 1 40 115384 0.16

1 The baud rates do not all evenly divide 3MHz, so somedivisors produce a frequency error. The
UART, by its asynchronous nature, accommodates this error so long as it is small enough.

(a)

(b)

1
DCD

2
RX

3
TX

4
DTR

5
GND

6
DSR

7
RTS

8
CTS

9
RI

DCD

RX

TX

DTR

GND

DSR

RTS

CTS

RI

DCD

RX

TX

DTR

GND

DSR

RTS

CTS

RI

DTE DCE

(c)

DCD

RX

TX

DTR

GND

DSR

RTS

CTS

RI

DCD

RX

TX

DTR

GND

DSR

RTS

CTS

RI

DTE DTE

Figure e9.13 DE-9 male cable
(a) pinout, (b) standard wiring, and

(c) null modem wiring
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Next, set the number of data, stop, and parity bits using the
UART_LCRH line control register. By default, the UART has 1 stop bit
and no parity, but strangely only transmits and receives 5-bit words.
Hence, the WLEN field (bits 6:5) of UART_LCRH must be set to 3
to handle 8-bit words. Finally, enable the UART by turning on bit 0
(UARTEN) of the UART_CR control register.

Data is transmitted and received using the UART_DR data register
and UART_FR framing register. To transmit data, wait until bit 7 (TXFE)
of UART_FR is 1 to indicate that the transmitter is not busy, then write a
byte to UART_DR. To receive data, wait until bit 4 (RXFE) of UART_FR
is 0 to indicate that the receiver has data, then read the byte from
UART_DR.

Example e9.5 SERIAL COMMUNICATION WITH A PC

Develop a circuit and a C program for a Raspberry Pi to communicate with a PC
over a serial port at 115200 baud with 8 data bits, 1 stop bit, and no parity. The
PC should be running a console program such as PuTTY2 to read and write over
the serial port. The program should ask the user to type a string. It should then tell
the user what she typed.

Solution: Figure e9.15(a) shows a basic schematic of the serial link illustrating the
issues of level conversion and cabling. Because few PCs still have physical serial
ports, we use a Plugable USB to RS-232 DB9 Serial Adapter from plugable.
com shown in Figure e9.16 to provide a serial connection to the PC. The adapter
connects to a female DE-9 connector soldered to wires that feed a transceiver,
which converts the voltages from the bipolar RS-232 levels to the Pi’s 3.3 V level.
The Pi and PC are both Data Terminal Equipment, so the TX and RX pins must
be cross-connected in the circuit. The RTS/CTS handshaking from the Pi is not
used, and the RTS and CTS on the DE9 connector are tied together so that the
PC will shake its own hand. Figure e9.15(b) shows an easier approach with an
Adafruit 954 USB to TTL serial cable. The cable is directly compatible with
3.3 V levels and has female header pins that plug directly into the Raspberry Pi
male headers.

To configure PuTTY to work with the serial link, set Connection type to
Serial and Speed to 115200. Set Serial line to the COM port assigned by the
operating system to the Serial to USB Adapter. In Windows, this can be found

2 PuTTY is available for free download at www.putty.org.
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in the Device Manager; for example, it might be COM3. Under the Connection→
Serial tab, set flow control to NONE or RTS/CTS. Under the Terminal tab,
set Local Echo to Force On to have characters appear in the terminal as you
type them.

The serial port device driver code in EasyPIO.h is listed below. The Enter
key in the terminal program corresponds to a carriage return character
represented as '\r' in C with an ASCII code of 0x0D. To advance to
the beginning of the next line when printing, send both the '\n' and '\r'
(new line and carriage return) characters.3 The uartInit function configures
the UART as described above. Similarly, getCharSerial and putCharSerial

TX / GPIO14 8

RX / GPIO15 10

Pi
MAX3232E
Transceiver

11 T1IN

10 T2IN

12 R1OUT

9 R2OUT

T1OUT 14

T2OUT 7

R1IN 13

R2IN 8

1 C1+

4 C2+

3 C1-

5 C2-

16 VDD

15 GND 

2 V+

6 V-

0.1 μF 0.1 μF

0.1 μF0.1 μF

Female
DE-9

Connector

1 DCD

3 TX

2 RX

4 DTR

5 GND

7 RTS

6 DSR

8 CTS

9 RI

Plugable
USBtoRS-232
Serial Adapter

To PC
USB
Port

(a)

TX / GPIO14 8

RX / GPIO15 10

Pi

GND 9

GND 9

(b)

Adafruit 954 USB toTTL Serial Cable

To PC
USB
Port

RX

TX

GND

white

green

black

Figure e9.15 Raspberry Pi to PC serial link (a) Plugable cable, (b) Adafruit cable

Figure e9.16 Plugable USB to
RS-232 DB9 serial adapter

(© 2012 Plugable Technologies;
reprinted with permission.)

Note that the operating system
also prints a log-in prompt to the
serial port. You may see some
interesting interactions between
the OS and your program when
both use the port.
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3 PuTTY prints correctly even if the \r is omitted.

wait until the UART is ready and then read or write a byte from the data
register.

void uartInit(int baud) {
uint fb = 12000000/baud; // 3 MHz UART clock

pinMode(14, ALT0); // TX
pinMode(15, ALT0); // RX
UART_IBRD = fb >> 6; // 6 Fract, 16 Int bits of BRD
UART_FBRD = fb & 63;
UART_LCRHbits.WLEN = 3; // 8 Data, 1 Stop, no Parity, no FIFO, no Flow
UART_CRbits.UARTEN = 1; // Enable uart

}

char getCharSerial(void) {
while (UART_FRbits.RXFE); // Wait until data is available
return UART_DRbits.DATA; // Return char from serial port

}

void putCharSerial(char c) {
while (!UART_FRbits.TXFE); // Wait until ready to transmit
UART_DRbits.DATA = c; // Send char to serial port

}

The main function demonstrates printing to the console and reading from the
console using the putStrSerial and getStrSerial functions.

#include "EasyPIO.h"

#define MAX_STR_LEN 80

void getStrSerial(char *str) {
int i = 0;
do { // Read an entire string until

str[i] = getCharSerial(); // Carriage return
} while ((str[i++ ] != '\r') && (i < MAX_STR_LEN)); // Look for carriage return
str[i-1] = 0; // Null-terminate the string

}

void putStrSerial(char *str) {
int i = 0;
while (str[i] != 0) { // Iterate over string

putCharSerial(str[i++ ]); // Send each character
}

}

int main(void) {
char str[MAX_STR_LEN];
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Communicating with the serial port from a C program on a PC
is a bit of a hassle because serial port driver libraries are not
standardized across operating systems. Other programming environ-
ments such as Python, Matlab, or LabVIEW make serial communication
painless.

9 . 3 . 5 Timers

Embedded systems commonly need to measure time. For example, a
microwave oven needs a timer to keep track of the time of day and
another to measure how long to cook. It might use yet another to generate
pulses to the motor spinning the platter, and a fourth to control the
power setting by only activating the microwave’s energy for a fraction
of every second.

The BCM2835 has a system timer with a 64-bit free-running coun-
ter that increments every microsecond (i.e. at 1 MHz) and four 32-bit
timer compare channels. Figure e9.17 shows the memory map for the
system timer. SYS_TIMER_CLO and CHI contain the lower and upper
32 bits of the 64-bit counter value. SYS_TIMER_C0…C3 are 32-bit
compare channels. When any of the compare channels match SYS_TI-
MER_CLO, the corresponding match bit (M0-M3) in the bottom four
bits of SYS_TIMER_CS is set. A match bit is cleared by writing a 1 to
that bit of SYS_TIMER_CS. This may seem counterintuitive, but it pre-
vents inadvertently clearing other match bits. One can measure a parti-
cular number of microseconds by adding that time to CLO and
putting it in C1, clearing SYS_TIMER_CS.M1, then waiting until SYS_-
TIMER_CS.M1 is set.

Unfortunately, Linux is a multitasking operating system that
may switch between processes without warning. If your program is
waiting for a timer match and then another process begins executing,
your program may not resume until long after the match occurs and

The graphics processing unit
and operating system may use
channels 0, 2, and 3, so user
code should check
SYSTEM_TIMER_C1.

0x20003000

SYS_TIMER_CHI

...

...

SYS_TIMER_C0
SYS_TIMER_C1
SYS_TIMER_C2
SYS_TIMER_C3

SYS_TIMER_CLO
SYS_TIMER_CS

0x20003004
0x20003008
0x2000300C
0x20003010
0x20003014
0x20003018

Figure e9.17 System timer
registers

pioInit();
uartInit(115200); // Initialize UART with baud rate

while (1) {
putStrSerial("Please type something: \r\n");
getStrSerial(str);
putStrSerial("You typed: ");
putStrSerial(str);
putStrSerial("\r\n");

}
}

9.3 Embedded I/O Systems 531.e23



you may measure the wrong amount of time. To avoid this, your program
can turn off interrupts during critical timing loops so that Linux will not
switch processes. Be sure to turn the interrupts back on when you are
done. EasyPIO defines noInterrupts and interrupts functions to dis-
able and enable interrupts, respectively. While interrupts are disabled,
the Pi will not switch between processes and cannot even respond to the
user pressing Ctrl-C to kill a program. If your program hangs, you’ll need
to turn off power and reboot your Pi to recover.

Example e9.6 BLINKING LED

Write a program that blinks the status LED on the Raspberry Pi 5 times
per second for 4 seconds.

Solution: The delayMicros function in EasyPIO creates a delay of a specified
number of microseconds using the timer compare channel 1.

void delayMicros(int micros) {
SYS_TIMER_C1 = SYS_TIMER_CLO + micros; // Set the compare register
SYS_TIMER_CSbits.M1 = 1; // Reset match flag to 0
while (SYS_TIMER_CSbits.M1 == 0); // Wait until match flag is set

}

void delayMillis(int millis) {
delayMicros(millis*1000); // 1000 μs per ms

}

GPIO47 drives the activity LED on the Pi B+ . The program sets this pin to be an
output and disables interrupts. It then turns the LED OFF and ON through a
series of digital writes with a 200 ms repetition rate (5 Hz). The program finally
reenables interrupts.

#include "EasyPIO.h"

void main(void) {
int i;

pioInit();

pinMode(47, OUTPUT); // Status led as output
noInterrupts(); // Disable interrupts

for (i= 0; i<20; i++ ) {
delayMillis(150);
digitalWrite(47, 0); // Turn led off
delayMillis(50);
digitalWrite(47, 1); // Turn led on

}
interrupts(); // Re-enable interrupts

}
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9 . 3 . 6 Analog I/O

The real world is an analog place. Many embedded systems need analog
inputs and outputs to interface with the world. They use analog-to-digital
converters (ADCs) to quantize analog signals into digital values, and
digital-to-analog-converters (DACs) to do the reverse. Figure e9.18 shows
symbols for these components. Such converters are characterized by their
resolution, dynamic range, sampling rate, and accuracy. For example, an
ADC might have N= 12-bit resolution over a range Vref

− to Vref
+ of

0–5 V with a sampling rate of fs= 44 kHz and an accuracy of ±3 least sig-
nificant bits (lsbs). Sampling rates are also listed in samples per second
(sps), where 1 sps= 1 Hz. The relationship between the analog input
voltage Vin(t) and the digital sample X[n= t / fs] is

X n½ � = 2N VinðtÞ−Vref−

Vref + −Vref −

For example, an input voltage of 2.5 V (half of full scale) would corre-
spond to an output of 1000000000002= 80016, with an uncertainty of
up to 3 lsbs.

Similarly, a DAC might have N= 16-bit resolution over a full-scale
output range of Vref= 2.56 V. It produces an output of

VoutðtÞ =
X½n�
2N

Vref

Many microcontrollers have built-in ADCs of moderate performance.
For higher performance (e.g., 16-bit resolution or sampling rates in excess
of 1 MHz), it is often necessary to use a separate ADC connected to the
microcontroller. Fewer microcontrollers have built-in DACs, so separate
chips may also be used. However, microcontrollers often produce analog
outputs using a technique called pulse-width modulation (PWM).

9.3.6.1 D/A Conversion
The BCM2835 has a specialized DAC for composite video output, but no
general-purpose converter. This section describes D/A conversion using
external DACs and illustrates interfacing the Raspberry Pi to other chips
over parallel and serial ports. The next section achieves the same result
using pulse-width modulation.

Some DACs accept the N-bit digital input on a parallel interface with
N wires, while others accept it over a serial interface such as SPI. Some
DACs require both positive and negative power supply voltages, while
others operate off of a single supply. Some support a flexible range of
supply voltages, while others demand a specific voltage. The input logic
levels should be compatible with the digital source. Some DACs produce
a voltage output proportional to the digital input, while others produce a

ADC

VDD

Vref−

Vin(t )

Vout(t)DACX [n]

VDD

Vref

(b)

(a)

N

N

clk

Vref+

X [n]

Figure e9.18 ADC and DAC
symbols
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current output; an operational amplifier may be needed to convert this
current to a voltage in the desired range.

In this section, we use the Analog Devices AD558 8-bit parallel DAC
and the Linear Technology LTC1257 12-bit serial DAC. Both produce
voltage outputs, run off a single 5–15 V power supply, use VIH = 2.4 V
such that they are compatible with 3.3 V I/O, come in DIP packages that
make them easy to breadboard, and are easy to use. The AD558 produces
an output on a scale of 0-2.56 V, consumes 75 mW, comes in a 16-pin
package, and has a 1 μs settling time permitting an output rate of 1
Msamples/sec. The datasheet is at analog.com. The LTC1257 produces
an output on a scale of 0–2.048 V, consumes less than 2 mW, comes in
an 8-pin package, and has a 6 μs settling time. Its SPI operates at a max-
imum of 1.4 MHz. The datasheet is at linear.com.

Example e9.7 ANALOG OUTPUT WITH EXTERNAL DACS

Sketch a circuit and write the software for a simple signal generator producing
sine and triangle waves using a Raspberry Pi, an AD558, and an LTC1257.

Solution: The circuit is shown in Figure e9.19. The AD558 connects to the Pi
via GPIO14, 15, 17, 18, 22, 23, 24, and 25. It connects Vout Sense and Vout
Select to Vout to set the 2.56 V full-scale output range. The LTC1257 connects

GPIO15 10

GPIO17 11

Raspberry Pi

GPIO18 12

GPIO22 15

1 DB0

2 DB1

3 DB2

4 DB3

5 DB4

6 DB5

7 DB6

8 DB7

Vout 16

Vout Sense 15

Vout Select 14

GND

GND

VCC

CS

CE

5 V

GPIO14 8

GPIO24 18

GPIO25 22

GPIO23 16

A
D

558

Out1

0.1 μF

1 CLK

2 Din

3 LOAD

4 Dout

VCC 8

Vout 7

REF 6

GND

5 V

Out2
0.1 μFLT

C
1257

SCLK 23

MOSI 19

GPIO2 3

GND

Figure e9.19 DAC parallel and serial interfaces to a Raspberry Pi
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to the Pi via SPI0. Both ADCs use a 5 V power supply and have a 0.1 μF decou-
pling capacitor to reduce power supply noise. The active-low chip enable and load
signals on the DACs indicate when to convert the next digital input. They are
driven high while a new input is being loaded.

The program is listed below. pinsMode and digitalWrites are similar to
pinMode and digitalWrite but operate on an array of pins. The program sets
the 8 parallel port pins to be outputs and also configures GPIO2 as an output
to drive the chip enable and load signals. It initializes the SPI to 1.4 MHz.
initWaveTables precomputes an array of sample values for the sine and triangle
waves. The sine wave is set to a 12-bit scale and the triangle to an 8-bit scale.
There are 64 points per period of each wave; changing this value trades precision
for frequency. genWaves cycles through the samples. It disables interrupts to avoid
switching processes and garbling the waves. For each sample, it disables the CE
and LOAD signals to the DACs, sends the new sample over the parallel and serial
ports, reenables the DACs, and then waits until the timer indicates that it is time
for the next sample. spiSendReceive16 transmits two bytes, but the LTC1257
only cares about the last 12 bits sent. The maximum frequency of somewhat
more than 1000 Hz (64 Ksamples/sec) is set by the time to send each point in
the genWaves function, of which the SPI transmission is a major component.

#include "EasyPIO.h"
#include math.h> // required to use the sine function

#define NUMPTS 64
int sine[NUMPTS], triangle[NUMPTS];
int parallelPins[8] = {14,15,17,18,22,23,24,25};

void initWaveTables(void) {
int i;
for (i= 0; i<NUMPTS; i++ ) {

sine[i] = 2047*(sin(2*3.14159*i/NUMPTS) + 1); // 12-bit scale
if (i<NUMPTS/2) triangle[i] = i*511/NUMPTS; // 8-bit scale
else triangle[i] = 510-i*511/NUMPTS;

}
}

void genWaves(int freq) {
int i, j;
int microPeriod = 1000000/(NUMPTS*freq);

noInterrupts(); // disable interrupts to get accurate timing
for (i= 0; i<2000; i++ ){

for (j= 0; j<NUMPTS; j++ ) {
SYS_TIMER_C1 = SYS_TIMER_CLO + microPeriod; // Set time between samples
SYS_TIMER_CSbits.M1 = 1; // Clear timer match
digitalWrite(2,1); // No load while changing inputs
spiSendReceive16(sine[j]);
digitalWrites(parallelPins, 8, triangle[j]);
digitalWrite(2,0); // Load new points into DACs
while (!SYS_TIMER_CSbits.M1); // Wait until timer matches

}
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9.3.6.2 Pulse-Width Modulation
Another way for a digital system to generate an analog output is with
pulse-width modulation (PWM), in which a periodic output is pulsed
high for part of the period and low for the remainder. The duty cycle
is the fraction of the period for which the pulse is high, as shown in
Figure e9.20. The average value of the output is proportional to the duty
cycle. For example, if the output swings between 0 and 3.3 V and has a
duty cycle of 25%, the average value will be 0.25 × 3.3= 0.825 V. Low-
pass filtering a PWM signal eliminates the oscillation and leaves a signal
with the desired average value. Thus, PWM is an effective way to produce
an analog output if the pulse rate is much higher than the analog output
frequencies of interest.

The BCM2835 has a PWM controller capable of producing two
simultaneous outputs. PWM0 is available at GPIO18 as pin function
ALT5, while both PWM outputs are available on the stereo audio jack.
Figure e9.21 shows the memory map for the PWM unit and for the clock
manager that it depends upon.

The PWM_CTL register is used to turn on pulse width modulation.
Bit 0 (PWEN1) must be set to enable the output. Bit 7 (MSEN1: mark-
space enable) should also be set to produce pulse width modulation of
the form of Figure e9.20 in which the output is HIGH for part of the per-
iod and LOW for the remainder.

}
interrupts();

}

void main(void) {
pioInit();

pinsMode(parallelPins, 8, OUTPUT); // Set pins connected to the AD558 as outputs
pinMode(2, OUTPUT); // Make pin 2 an output to control LOAD and CE
spiInit(1400000, 0); // 1.4MHz SPI clock, default settings
initWaveTables();
genWaves(1000);

}

Period

Pulse width Duty cycle = 
Pulse width

Period

Figure e9.20 Pulse-width
modulated (PWM) signal
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The PWM signals are derived from a PWM clock generated by the
BCM2835 clock manager. The PWM_RNG1 and PWM_DAT1 registers
control the period and duty cycle, respectively, by specifying the number
of PWM clock ticks for the overall waveform and for the HIGH portion.
For example, if the clock manager produces a 25 MHz clock and
PWM_RNG1 = 1000 and PWM_DAT1= 300, the PWM output will
operate at (25 MHz / 1000)= 25 kHz and the duty cycle will be
300 / 1000 = 30%.

The clock manager is configured using the CM_PWMCTL and the
frequency is set using the CM_PWMDIV register. Table e9.7 summarizes
the bit fields of the CM_PWMCTL register. The maximum frequency of
the PWM clock is 25 MHz. It can be obtained from the 500 MHz PLLD
clock on the Pi as follows:

▶ CM_PWMCTL: Write 0x5A to PASSWD and 1 to KILL to stop the
clock generator

▶ CM_PWMCLT: Wait for BUSY to clear to indicate the clock is
stopped

▶ CM_PWMCTL: Write 0x5A to PASSWD, 1 to MASH, and 6 to SRC
to select PLLD with no audio noise shaping

▶ CM_PWMDIV: Write 0x5A to PASSWD and 20 to bits 23:12 to
divide PLLD by 20 from 500 MHz down to 25 MHz

▶ CM_PWMCTL: Write 0x5A to PASSWD and 1 to ENAB to restart
the clock generator

▶ CM_PWMCTL: Wait for BUSY to set to indicate the clock is
running

0x2020C000 PWM_CTL

PWM_RNG10x2020C010

...

...

PWM_DAT1

...

0x2020C014

CM_PWMDIV
CM_PWMCTL

0x201010A4
0x201010A0

...

Figure e9.21 PWM and clock
manager registers

Table e9.7 CM_PWMCTL register fields

Bit Name Description

31:24 PASSWD Must be set to 5A when writing

10:9 MASH Audio noise shaping

7 BUSY Clock generator running

5 KILL Write a 1 to stop the clock generator

4 ENAB Write a 1 to start the clock generator

3:0 SRC Clock source

The CM_PWM registers are
not documented in the
BCM2835 datasheet. You may
find information on them by
searching the Internet for
“BCM2835 Audio & PWM
Clocks” by G.J. van Loo.
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Example e9.8 ANALOG OUTPUT WITH PWM

Write an analogWrite(val) function to generate an analog output voltage using
PWM and an external RC filter. The function should accept an input between 0
(for 0 V output) and 255 (for full 3.3 V output).

Solution: Use PWM0 to produce a 78.125 kHz signal on GPIO18. The low pass
filter in Figure e9.22 has a corner frequency of

f c = 1
2πRC

= 1:6 kHz

to eliminate the high-speed oscillations and pass the average value.

The PWM functions in EasyPIO are given below. pwmInit initializes the PWM
module on GPIO18 as described above. setPWM sets the frequency and duty
cycle of the PWM output. Duty should be between 0 (always OFF) and 1
(always ON). The analogWrite function sets the duty cycle based on a full
scale of 255.

// Default PLLD value is 500 [MHz]
#define PLL_FREQUENCY 500000000
// Max pwm clk is 25 [MHz]
#define CM_FREQUENCY 25000000
#define PLL_CLOCK_DIVISOR (PLL_FREQUENCY / CM_FREQUENCY)

void pwmInit() {
pinMode(18, ALT5);

// Configure the clock manager to generate a 25 MHz PWM clock.
// Documentation on the clock manager is missing in the datasheet
// but found in "BCM2835 Audio and PWM Clocks" by G.J. van Loo 6 Feb 2013.
// Maximum operating frequency of PWM clock is 25 MHz.
// Writes to the clock manager registers require simultaneous writing
// a "password" of 5A to the top bits to reduce the risk of accidental writes.

CM_PWMCTL = 0; // Turn off PWM before changing
CM_PWMCTL = PWM_CLK_PASSWORD|0x20; // Turn off clock generator
while (CM_PWMCTLbits.BUSY); // Wait for generator to stop
CM_PWMCTL = PWM_CLK_PASSWORD|0x206; // Src = unfiltered 500 MHz CLKD
CM_PWMDIV = PWM_CLK_PASSWORD|(PLL_CLOCK_DIVISOR << 12); // 25 MHz
CM_PWMCTL = CM_PWMCTL|PWM_CLK_PASSWORD|0x10; // Enable PWM clock
while (!CM_PWMCTLbits.BUSY); // Wait for generator to start
PWM_CTLbits.MSEN1 = 1; // Channel 1 in mark/space mode
PWM_CTLbits.PWEN1 = 1; // Enable PWM

}

void setPWM(float freq, float duty) {
PWM_RNG1 = (int)(CM_FREQUENCY / freq);
PWM_DAT1 = (int)(duty * (CM_FREQUENCY / freq));

}

PWM0 / GPIO18 12

Raspberry Pi

1 KΩ

0.1 μF

Vout

Figure e9.22 Analog output using
PWM and low-pass filter
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9.3.6.3 A/D Conversion
The BCM2835 has no built-in ADC, so this section describes A/D conver-
sion using an external converter similar to the external DAC.

void analogWrite(int val) {
setPWM(78125, val/255.0);

}

The main function tests the PWM by setting the output to half scale (1.65 V).

#include "EasyPIO.h"

void main(void) {
pioInit();
pwmInit();
analogWrite(128);

}

Example e9.9 ANALOG INPUT WITH AN EXTERNAL ADC

Interface a 10-bit MCP3002 A/D converter to a Raspberry Pi using SPI and print
the input value. Set a full scale voltage of 3.3 V. Search for the datasheet on the
Web for full details of operation.

Solution: Figure e9.23 shows a schematic of the connection. The MCP3002
uses VDD as its full scale reference. It accepts a 3.3–5.5 V supply and we

Raspberry Pi

1 CS

2 CH0

3 CH1

4 GND

VDD 8

CLK 7

Dout 6

Din 5

IN
0.1 μFLTC

1257

SCLK 23

MOSI 19

3.3V 17

GND 25

MISO 21

SPI_CE0 24

1 kΩ

Figure e9.23 Analog input using
external ADC
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9 . 3 . 7 Interrupts

So far, we have relied on polling, in which the program continually checks
until an event occurs such as data arriving on a UART or a timer reaching
its compare value. This can be a waste of the processor’s power and
makes it difficult to write programs that do interesting work while simul-
taneously waiting for events to occur.

Most microcontrollers support interrupts. When an event occurs, the
microcontroller can stop regular program execution and jump to an inter-
rupt handler that responds to the interrupt, then return seamlessly to
where it left off.

The Raspberry Pi normally runs Linux, which intercepts interrupts
before they get to the program. Therefore, it is presently not straightfor-
ward to write interrupt-based programs and this text does not provide
examples on the Pi.

9.4 OTHER MICROCONTROLLER PERIPHERALS

Microcontrollers frequently interface with other external peripherals. This
section describes a variety of common examples, including character-
mode liquid crystal displays (LCDs), VGA monitors, Bluetooth wireless
links, and motor control. Standard communication interfaces including
USB and Ethernet are described in Sections 9.6.1 and 9.6.4.

choose 3.3 V. The ADC has two input channels, and we connect channel 0 to a
potentiometer that we can rotate to adjust the input voltage between 0 and 3.3 V.

The Pi code initializes the SPI and repeatedly reads and prints samples. According
to the datasheet, the Raspberry Pi must send the 16-bit quantity 0x6000 over SPI
to read CH0 and will receive the 10-bit result back in the bottom 10 bits of the 16-
bit result. The converter also requires a chip select signal, conveniently provided
by the SPI chip enable.

#include "EasyPIO.h"

void main(void) {
int sample;

pioInit();
spiInit(200000, 0); // 200 kHz SPI clock, default settings

while (1){
sample = spiSendReceive16(0x6000);
printf("Read %d\n", sample);

}
}
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9 . 4 . 1 Character LCDs

A character LCD is a small liquid crystal display capable of showing one
or a few lines of text. They are commonly used in the front panels of
appliances such as cash registers, laser printers, and fax machines that
need to display a limited amount of information. They are easy to inter-
face with a microcontroller over parallel, RS-232, or SPI interfaces. Crys-
talfontz America sells a wide variety of character LCDs ranging from
8 columns × 1 row to 40 columns × 4 rows with choices of color, back-
light, 3.3 or 5 V operation, and daylight visibility. Their LCDs can cost
$20 or more in small quantities, but prices come down to under $5 in
high volume.

This section gives an example of interfacing a Raspberry Pi to a
character LCD over an 8-bit parallel interface. The interface is compatible
with the industry-standard HD44780 LCD controller originally
developed by Hitachi. Figure e9.24 shows a Crystalfontz CFAH2002A-
TMI-JT 20 × 2 parallel LCD.

Figure e9.25 shows the LCD connected to a Pi over an 8-bit parallel
interface. The logic operates at 5 V but is compatible with 3.3 V inputs
from the Pi. The LCD contrast is set by a second voltage produced with
a potentiometer; it is usually most readable at a setting of 4.2–4.8 V.
The LCD receives three control signals: RS (1 for characters, 0 for
instructions), R/W (1 to read from the display, 0 to write), and E (pulsed
high for at least 250 ns to enable the LCD when the next byte is ready).
When the instruction is read, bit 7 returns the busy flag, indicating 1
when busy and 0 when the LCD is ready to accept another instruction.

To initialize the LCD, the Pi must write a sequence of instructions to
the LCD as given in Table e9.8. The instructions are written by holding
RS = 0 and R/W = 0, putting the value on the eight data lines, and pulsing
E. After each instruction, it must wait for at least a specified amount of
time (or sometimes until the busy flag is clear).

Figure e9.24 Crystalfontz
CFAH2002A-TMI 20×2 character LCD
(© 2012 Crystalfontz America;
reprinted with permission.)
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Figure e9.25 Parallel LCD
interface

Table e9.8 LCD initialization sequence

Write Purpose Wait (μs)

(apply VDD) Allow device to turn on 15000

0x30 Set 8-bit mode 4100

0x30 Set 8-bit mode again 100

0x30 Set 8-bit mode yet again Until busy flag is clear

0x3C Set 2 lines and 5 × 8 dot font Until busy flag is clear

0x08 Turn display OFF Until busy flag is clear

0x01 Clear display 1530

0x06 Set entry mode to increment
cursor after each character

Until busy flag is clear

0x0C Turn display ON with
no cursor
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Then, to write text to the LCD, the Pi can send a sequence of ASCII
characters. After each character, it must wait for the busy bit to clear. It
may also send the instruction 0x01 to clear the display or 0x02 to return
to the home position in the upper left.

Example e9.10 LCD CONTROL

Write a program to print “I love LCDs” to a character display.

Solution: The following program writes “I love LCDs” to the display by initializing
the display and then sending the characters.

#include "EasyPIO.h"

int LCD_IO_Pins[] = {14, 15, 4, 17, 22, 24, 9, 11};

typedef enum {INSTR, DATA} mode;
#define RS 7
#define RW 8
#define E 25

char lcdRead(mode md) {
char c;
pinsMode(LCD_IO_Pins, 8, INPUT);
digitalWrite(RS,(md == DATA)); // Set instr/data mode
digitalWrite(RW, 1); // Read mode
digitalWrite(E, 1); // Pulse enable
delayMicros(10); // Wait for LCD response
c = digitalReads(LCD_IO_Pins, 8); // Read a byte from parallel port
digitalWrite(E, 0); // Turn off enable
delayMicros(10);
return c;

}

void lcdBusyWait(void) {
char state;
do {

state = lcdRead(INSTR);
} while (state & 0x80);

}

void lcdWrite(char val, mode md) {
pinsMode(LCD_IO_Pins, 8, OUTPUT);
digitalWrite(RS, (md == DATA)); // Set instr/data mode. OUTPUT= 1, INPUT= 0
digitalWrite(RW, 0); // Set RW pin to write (aka: 0)
digitalWrites(LCD_IO_Pins, 8, val); // Write the char to the parallel port
digitalWrite(E, 1); delayMicros(10); // Pulse E
digitalWrite(E, 0); delayMicros(10);

}

void lcdClear(void) {
lcdWrite(0x01, INSTR); delayMicros(1530);

}
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9 . 4 . 2 VGA Monitor

A more flexible display option is to drive a computer monitor. The Rasp-
berry Pi has built-in support for HDMI and Composite video output. This
section explains the low-level details of driving a VGA monitor directly
from an FPGA.

The Video Graphics Array (VGA) monitor standard was introduced
in 1987 for the IBM PS/2 computers, with a 640×480 pixel resolution
on a cathode ray tube (CRT) and a 15-pin connector conveying color
information with analog voltages. Modern LCD monitors have higher
resolution but remain backward compatible with the VGA standard.

In a cathode ray tube, an electron gun scans across the screen from left
to right exciting fluorescent material to display an image. Color CRTs use
three different phosphors for red, green, and blue, and three electron beams.
The strength of each beam determines the intensity of each color in the
pixel. At the end of each scanline, the gun must turn off for a horizontal
blanking interval to return to the beginning of the next line. After all of
the scanlines are complete, the gun must turn off again for a vertical blank-
ing interval to return to the upper left corner. The process repeats about 60–
75 times per second to refresh the fluorescence and give the visual illusion of
a steady image. A liquid crystal display doesn’t require the same electron
scan gun, but uses the same VGA interface timing for compatibility.

void lcdPrintString(char* str) {
while (*str != 0) {

lcdWrite(*str, DATA); lcdBusyWait();
str++;

}
}

void lcdInit(void) {
pinMode(RS, OUTPUT); pinMode(RW, OUTPUT); pinMode(E,OUTPUT);
// send initialization routine:
delayMicros(15000);
lcdWrite(0x30, INSTR); delayMicros(4100);
lcdWrite(0x30, INSTR); delayMicros(100);
lcdWrite(0x30, INSTR); lcdBusyWait();
lcdWrite(0x3C, INSTR); lcdBusyWait();
lcdWrite(0x08, INSTR); lcdBusyWait();
lcdClear();
lcdWrite(0x06, INSTR); lcdBusyWait();
lcdWrite(0x0C, INSTR); lcdBusyWait();

}

void main(void) {
pioInit();
lcdInit();
lcdPrintString("I love LCDs!");

}
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In a 640×480 pixel VGA monitor refreshed at 59.94 Hz, the pixel
clock operates at 25.175 MHz, so each pixel is 39.72 ns wide. The full
screen can be viewed as 525 horizontal scanlines of 800 pixels each, but
only 480 of the scanlines and 640 pixels per scan line actually convey the
image, while the remainder are black. A scanline begins with a back porch,
the blank section on the left edge of the screen. It then contains 640 pixels,
followed by a blank front porch at the right edge of the screen and a
horizontal sync (hsync) pulse to rapidly move the gun back to the left edge.

Figure e9.26(a) shows the timing of each of these portions of the
scanline, beginning with the active pixels. The entire scan line is
31.778 μs long. In the vertical direction, the screen starts with a back
porch at the top, followed by 480 active scan lines, followed by a front
porch at the bottom and a vertical sync (vsync) pulse to return to the
top to start the next frame. A new frame is drawn 60 times per second.

Figure e9.26(b) shows the vertical timing; note that the time units are
now scan lines rather than pixel clocks. Higher resolutions use a faster
pixel clock, up to 388 MHz at 2048×1536 at 85 Hz. For example,
1024×768 at 60 Hz can be achieved with a 65 MHz pixel clock.

The horizontal timing involves a front porch of 16 clocks, hsync pulse
of 96 clocks, and back porch of 48 clocks. The vertical timing involves a
front porch of 11 scan lines, vsync pulse of 2 lines, and back porch of
32 lines.

Figure e9.27 shows the pinout for a female connector coming from a
video source. Pixel information is conveyed with three analog voltages for
red, green, and blue. Each voltage ranges from 0–0.7 V, with more posi-
tive indicating brighter. The voltages should be 0 during the front and

Active pixels
640

Scan line (800 pixel clocks)

Hsync

Color

(a)

Hsync

Vsync

Color

(b)

Active scanlines
480

Frame (525 scan lines)
Vsync

2

Front
porch

Front
porch

Back
porch

16 4896

11

Back
porch

32

Figure e9.26 VGA timing: (a) horizontal, (b) vertical

5 4 3 2 1
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15 14 13 12 11

1: Red
2: Green
3: Blue
4: Reserved
5: GND
6: GND
7: GND
8: GND

9: 5 V (optional)
10: GND
11: Reserved
12: I2C data
13: Hsync
14: Vsync
15: I2C clock

Figure e9.27 VGA connector
pinout
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back porches. The video signal must be generated in real time at high
speed, which is difficult on a microcontroller but easy on an FPGA.
A simple black and white display could be produced by driving all three
color pins with either 0 or 0.7 V using a voltage divider connected to a
digital output pin. A color monitor, on the other hand, uses a video
DAC with three separate D/A converters to independently drive the three
color pins. Figure e9.28 shows an FPGA driving a VGA monitor through
an ADV7125 triple 8-bit video DAC. The DAC receives 8 bits of R, G,
and B from the FPGA. It also receives a SYNC_b signal that is driven
active low whenever HSYNC or VSYNC are asserted. The video DAC
produces three output currents to drive the red, green, and blue analog
lines, which are normally 75 Ω transmission lines parallel terminated at
both the video DAC and the monitor. The RSET resistor sets the scale of
the output current to achieve the full range of color. The clock rate
depends on the resolution and refresh rate; it may be as high as
330 MHz with a fast-grade ADV7125JSTZ330 model DAC.
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Figure e9.28 FPGA driving VGA
cable through video DAC
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Example e9.11 VGA MONITOR DISPLAY

Write HDL code to display text and a green box on a VGA monitor using the
circuitry from Figure e9.28.

Solution: The code assumes a system clock frequency of 40 MHz and uses a
phase-locked loop (PLL) on the FPGA to generate the 25.175 MHz VGA clock.
PLL configuration varies among FPGAs; for the Cyclone III, the frequencies are
specified with Altera’s megafunction wizard. Alternatively, the VGA clock could
be provided directly from a signal generator.

The VGA controller counts through the columns and rows of the screen, generat-
ing the hsync and vsync signals at the appropriate times. It also produces a
blank_b signal that is asserted low to draw black when the coordinates are outside
the 640×480 active region.

The video generator produces red, green, and blue color values based on the current
(x, y) pixel location. (0, 0) represents the upper left corner. The generator draws a
set of characters on the screen, along with a green rectangle. The character genera-
tor draws an 8×8-pixel character, giving a screen size of 80×60 characters. It looks
up the character from a ROM,where it is encoded in binary as 6 columns by 8 rows.
The other two columns are blank. The bit order is reversed by the SystemVerilog
code because the leftmost column in the ROM file is the most significant bit, while
it should be drawn in the least significant x-position.

Figure e9.29 shows a photograph of the VGA monitor while running this
program. The rows of letters alternate red and blue. A green box overlays part
of the image.

Figure e9.29 VGA output
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vga.sv

module vga(input logic clk,
output logic vgaclk, // 25.175 MHz VGA clock
output logic hsync, vsync,
output logic sync_b, blank_b, // To monitor & DAC
output logic [7:0] r, g, b); // To video DAC

logic [9:0] x, y;

// Use a PLL to create the 25.175 MHz VGA pixel clock
// 25.175 MHz clk period = 39.772 ns
// Screen is 800 clocks wide by 525 tall, but only 640 x 480 used
// HSync = 1/(39.772 ns *800) = 31.470 kHz
// Vsync = 31.474 kHz / 525 = 59.94 Hz (~60 Hz refresh rate)
pll vgapll(.inclk0(clk), .c0(vgaclk));

// Generate monitor timing signals
vgaController vgaCont(vgaclk, hsync, vsync, sync_b, blank_b, x, y);

// User-defined module to determine pixel color
videoGen videoGen(x, y, r, g, b);

endmodule

module vgaController #(parameter HACTIVE = 10’d640,
HFP = 10’d16,
HSYN = 10’d96,
HBP = 10’d48,
HMAX = HACTIVE+ HFP+ HSYN+ HBP,
VBP = 10’d32,
VACTIVE = 10’d480,
VFP = 10’d11,
VSYN = 10’d2,
VMAX = VACTIVE+ VFP+ VSYN+ VBP)

(input logic vgaclk,
outputlogic hsync,vsync,sync_b,blank_b,
output logic [9:0] x, y);

// counters for horizontal and vertical positions
always @(posedge vgaclk) begin

x++;
if (x== HMAX) begin

x = 0;
y++;
if (y== VMAX) y = 0;

end
end

// Compute sync signals (active low)
assign hsync = ~(hcnt >= HACTIVE + HFP & hcnt < HACTIVE + HFP + HSYN);
assign vsync = ~(vcnt >= VACTIVE + VFP & vcnt < VACTIVE + VFP + VSYN);
assign sync_b = hsync & vsync;

// Force outputs to black when outside the legal display area
assign blank_b = (hcnt < HACTIVE) & (vcnt < VACTIVE);

endmodule

module videoGen(inputlogic [9:0] x, y, output logic [7:0] r, g, b);
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logic pixel, inrect;

// Given y position, choose a character to display
// then look up the pixel value from the character ROM
// and display it in red or blue.Also draw a green rectangle.
chargenrom chargenromb(y[8:3]+ 8’d65, x[2:0], y[2:0], pixel);
rectgen rectgen(x, y, 10’d120, 10’d150, 10’d200, 10’d230, inrect);
assign {r, b} = (y[3]==0) ? {{8{pixel}},8’h00} : {8’h00,{8{pixel}}};
assign g = inrect ? 8’hFF : 8’h00;

endmodule

module chargenrom(input logic [7:0] ch,
input logic [2:0] xoff, yoff,
output logic pixel);

logic [5:0] charrom[2047:0]; // character generator ROM
logic [7:0] line; // a line read from the ROM

// Initialize ROM with characters from text file
initial

$readmemb("charrom.txt", charrom);

// Index into ROM to find line of character
assign line = charrom[yoff+ {ch-65, 3’b000}]; // Subtract 65 because A

// is entry 0

// Reverse order of bits
assign pixel = line[3’d7-xoff];

endmodule

module rectgen(input logic [9:0] x, y, left, top, right, bot,
output logic inrect);

assign inrect = (x >= left & x < right & y >= top & y < bot);
endmodule

charrom.txt

// A ASCII 65
011100
100010
100010
111110
100010
100010
100010
000000
//B ASCII 66
111100
100010
100010
111100
100010
100010
111100
000000
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9 . 4 . 3 Bluetooth Wireless Communication

There are many standards now available for wireless communication,
including Wi-Fi, ZigBee, and Bluetooth. The standards are elaborate
and require sophisticated integrated circuits, but a growing assortment
of modules abstract away the complexity and give the user a simple inter-
face for wireless communication. One of these modules is the BlueSMiRF,
which is an easy-to-use Bluetooth wireless interface that can be used
instead of a serial cable.

Bluetooth is a wireless standard initially developed by Ericsson in
1994 for low-power, moderate speed communication over distances of
5–100 meters, depending on the transmitter power level. It is commonly
used to connect an earpiece to a cellphone or a keyboard to a computer.
Unlike infrared communication links, it does not require a direct line of
sight between devices.

Bluetooth operates in the 2.4 GHz unlicensed industrial-scientific-
medical (ISM) band. It defines 79 radio channels spaced at 1 MHz
intervals starting at 2402 MHz. It hops between these channels in a
pseudo-random pattern to avoid consistent interference with other
devices, such as wireless routers operating in the same band. As given in
Table e9.9, Bluetooth transmitters are classified at one of three power
levels, which dictate the range and power consumption. In the basic rate
mode, it operates at 1 Mbit/sec using Gaussian frequency shift keying
(FSK). In ordinary FSK, each bit is conveyed by transmitting a frequency
of fc ± fd, where fc is the center frequency of the channel and fd is an offset
of at least 115 kHz. The abrupt transition in frequencies between bits
consumes extra bandwidth. In Gaussian FSK, the change in frequency is
smoothed to make better use of the spectrum. Figure e9.30 shows the fre-
quencies being transmitted for a sequence of 0’s and 1’s on a 2402 MHz
channel using FSK and GFSK.

A BlueSMiRF Silver module, shown in Figure e9.31(a), contains a
Class 2 Bluetooth radio, modem, and interface circuitry on a small card
with a serial interface. It communicates with another Bluetooth device

//C ASCII 67
011100
100010
100000
100000
100000
100010
011100
000000
...

Bluetooth is named for King
Harald Bluetooth of Denmark,
a 10th century monarch who
unified the warring Danish
tribes. This wireless standard
is only partially successful at
unifying a host of competing
wireless protocols!

Table e9.9 Bluetooth classes

Class

Transmitter
Power
(mW)

Range
(m)

1 100 100

2 2.5 10

3 1 5

0 1 2 3 4 5 6

2401.9

2402

2402.1

t (μs)

f (
M

H
z)

FSK

GFSK

Figure e9.30 FSK and GFSK
waveforms

(a)

(b)

Figure e9.31 BlueSMiRF module
and USB dongle
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such as a Bluetooth USB dongle connected to a PC. Thus, it can provide a
wireless serial link between a Pi and a PC similar to the link from Figure
e9.15 but without the cable. The wireless link is compatible with the same
software as is the wired link.

Figure e9.32 shows a schematic for such a link. The TX pin
of the BlueSMiRF connects to the RX pin of the Pi, and vice versa.
The RTS and CTS pins are connected so that the BlueSMiRF shakes its
own hand.

The BlueSMiRF defaults to 115.2 k baud with 8 data bits, 1 stop
bit, and no parity or flow control. It operates at 3.3 V digital logic
levels, so no RS-232 transceiver is necessary to connect with another
3.3 V device.

To use the interface, plug a USB Bluetooth dongle into a PC. Power
up the Pi and BlueSMiRF. The red STAT light will flash on the
BlueSMiRF indicating that it is waiting to make a connection. Open the
Bluetooth icon in the PC system tray and use the Add Bluetooth Device
Wizard to pair the dongle with the BlueSMiRF. The default passkey for
the BlueSMiRF is 1234. Take note of which COM port is assigned to
the dongle. Then communication can proceed just as it would over a
serial cable. Note that the dongle typically operates at 9600 baud and that
PuTTY must be configured accordingly.

9 . 4 . 4 Motor Control

Another major application of microcontrollers is to drive actuators such
as motors. This section describes three types of motors: DC motors, servo
motors, and stepper motors. DC motors require a high drive current, so a
powerful driver such as an H-bridge must be connected between the
microcontroller and the motor. They also require a shaft encoder if the

Raspbery Pi BlueSMiRF

1 CTS

3 GND

2 VCC

4 TX

5 RX

6 RTS

PC
USB

Bluetooth
Dongle

Wireless
Link

USB
Port

TX / GPIO14 8

RX / GPIO15 10

GND 9

3.3V 1

Figure e9.32 BlueSMiRF Raspberry Pi to PC link
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user wants to know the current position of the motor. Servo motors
accept a pulse-width modulated signal to specify their position over a lim-
ited range of angles. They are very easy to interface, but are not as power-
ful and are not suited to continuous rotation. Stepper motors accept a
sequence of pulses, each of which rotates the motor by a fixed angle called
a step. They are more expensive and still need an H-bridge to drive the
high current, but the position can be precisely controlled.

Motors can draw a substantial amount of current and may introduce
glitches on the power supply that disturb digital logic. One way to reduce
this problem is to use a different power supply or battery for the motor
than for the digital logic.

9.4.4.1 DC Motors
Figure e9.33 shows the structure of a brushed DC motor. The motor is a
two terminal device. It contains permanent stationary magnets called the
stator and a rotating electromagnet called the rotor or armature con-
nected to the shaft. The front end of the rotor connects to a split metal
ring called a commutator. Metal brushes attached to the power lugs
(input terminals) rub against the commutator, providing current to the
rotor’s electromagnet. This induces a magnetic field in the rotor that
causes the rotor to spin to become aligned with the stator field. Once
the rotor has spun part way around and approaches alignment with the
stator, the brushes touch the opposite sides of the commutator, reversing
the current flow and magnetic field and causing it to continue spinning
indefinitely.

DC motors tend to spin at thousands of rotations per minute (RPM)
at very low torque. Most systems add a gear train to reduce the speed to a
more reasonable level and increase the torque. Look for a gear train
designed to mate with your motor. Pittman manufactures a wide range
of high quality DC motors and accessories, while inexpensive toy motors
are popular among hobbyists.

A DC motor requires substantial current and voltage to deliver signif-
icant power to a load. The current should be reversible so the motor can
spin in both directions. Most microcontrollers cannot produce enough
current to drive a DC motor directly. Instead, they use an H-bridge,
which conceptually contains four electrically controlled switches, as
shown in Figure e9.34(a). If switches A and D are closed, current flows
from left to right through the motor and it spins in one direction. If B
and C are closed, current flows from right to left through the motor
and it spins in the other direction. If A and C or B and D are closed,
the voltage across the motor is forced to 0, causing the motor to actively
brake. If none of the switches are closed, the motor will coast to a stop.
The switches in an H-bridge are power transistors. The H-bridge also
contains some digital logic to conveniently control the switches.

(b)

(c)

Brushes

Shaft

Power
lugs

(a)

Stator
north
pole

Stator
south
poleRotor

electromagnet

Commutator

Figure e9.33 DC motor
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When the motor current changes abruptly, the inductance
of the motor’s electromagnet will induce a large voltage spike
that could damage the power transistors. Therefore, many H-bridges
also have protection diodes in parallel with the switches, as
shown in Figure e9.34(b). If the inductive kick drives either terminal
of the motor above Vmotor or below ground, the diodes will turn
ON and clamp the voltage at a safe level. H-bridges can dissipate
large amounts of power so a heat sink may be necessary to keep
them cool.

M

Vmotor

Vmotor

A

B

C

D

(a)

M

A

B

C

D

(b)

Figure e9.34 H-bridge

Example e9.12 AUTONOMOUS VEHICLE

Design a system in which a Raspberry Pi controls two drive motors for a robot
car. Write a library of functions to initialize the motor driver and to make the
car drive forward and back, turn left or right, and stop. Use PWM to control
the speed of the motors.

Solution: Figure e9.35 shows a pair of DC motors controlled by a Pi via a Texas
Instruments SN754410 dual H-bridge. The H-bridge requires a 5 V logic supply
VCC1 and a 4.5–36 V motor supply VCC2; it has VIH= 2 V and is hence compati-
ble with the 3.3 V I/O from the Pi. It can deliver up to 1 A of current to each of
two motors. Vmotor should come from a separate battery pack; the 5 V output
of the Pi cannot supply enough current to drive most motors and the Pi could
be damaged.

GPIO7 26

Raspberry Pi

M

Vmotor

1 EN12

3 1Y

2 1A

4 GND

5 GND

6 2Y

7 2A

8 VCC2

VCC1 16

4Y 14

4A 15

GND 13

GND 12

3Y 11

3A 10

EN34 9

SN754410 H-Bridge 5 V

MGPIO8 24

GPIO24 18

GPIO23 16

PWM0 / GPIO18 12

left right

Figure e9.35 Motor control with dual H-bridge
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Table e9.10 describes how the inputs to each H-bridge control a motor.
The microcontroller drives the enable signals with a PWM signal to control the speed
of the motors. It drives the four other pins to control the direction of each motor.

The PWM is configured to work at about 5 kHz with a duty cycle ranging from 0 to
100%. Any PWM frequency far higher than the motor’s bandwidth will give the
effect of smooth movement. Note that the relationship between duty cycle and motor
speed is nonlinear and that below some duty cycle, the motor will not move at all.

#include "EasyPIO.h"

// Motor Constants
#define MOTOR_1A 23
#define MOTOR_2A 24
#define MOTOR_3A 8
#define MOTOR_4A 7

void setSpeed(float dutycycle) { // pwmInit() must be called first.
setPWM(5000, dutycycle);

}

void setMotorLeft(int dir) { // dir of 1 = forward, 0 = backward
digitalWrite(MOTOR_1A, dir);
digitalWrite(MOTOR_2A, !dir);

}

void setMotorRight(int dir) { // dir of 1 = forward, 0 = backward
digitalWrite(MOTOR_3A, dir);
digitalWrite(MOTOR_4A, !dir);

}

void forward(void) {
setMotorLeft(1); setMotorRight(1); // Both motors drive forward

}

void backward(void) {
setMotorLeft(0); setMotorRight(0); // Both motors drive backward

}

void left(void) {
setMotorLeft(0); setMotorRight(1); // Left back, right forward

}

Table e9.10 H-Bridge control

EN12 1A 2A Motor

0 X X Coast

1 0 0 Brake

1 0 1 Reverse

1 1 0 Forward

1 1 1 Brake
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In the previous example, there is no way to measure the position
of each motor. Two motors are unlikely to be exactly matched, so
one is likely to turn slightly faster than the other, causing the robot
to veer off course. To solve this problem, some systems add shaft enco-
ders. Figure e9.36(a) shows a simple shaft encoder consisting of
a disk with slots attached to the motor shaft. An LED is placed
on one side and a light sensor is placed on the other side. The shaft enco-
der produces a pulse every time the gap rotates past the LED. A
microcontroller can count these pulses to measure the total angle
that the shaft has turned. By using two LED/sensor pairs spaced half a
slot width apart, an improved shaft encoder can produce quadrature
outputs shown in Figure e9.36(b) that indicate the direction the shaft
is turning as well as the angle by which it has turned. Sometimes shaft
encoders add another hole to indicate when the shaft is at an index
position.

void right(void) {
setMotorLeft(1); setMotorRight(0); // Right back, left forward

}

void halt(void) { // Turn both motors off
digitalWrite(MOTOR_1A, 0);
digitalWrite(MOTOR_2A, 0);
digitalWrite(MOTOR_3A, 0);
digitalWrite(MOTOR_4A, 0);

}

void initMotors(void) {
pinMode(MOTOR_1A, OUTPUT);
pinMode(MOTOR_2A, OUTPUT);
pinMode(MOTOR_3A, OUTPUT);
pinMode(MOTOR_4A, OUTPUT);
halt(); // Ensure motors are not spinning
pwmInit(); // Turn on PWM
setSpeed(0.75); // Default to partial power

}

main(void) {
pioInit();
initMotors();
forward(); delayMillis(5000);
backward(); delayMillis(5000);
left(); delayMillis(5000);
right(); delayMillis(5000);
halt();

}
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9.4.4.2 Servo Motor
A servo motor is a DC motor integrated with a gear train, a shaft encoder,
and some control logic so that it is easier to use. They have a limited rotation,
typically 180°. Figure e9.37 shows a servo with the lid removed to reveal the
gears. A servo motor has a 3-pin interface with power (typically 5 V),
ground, and a control input. The control input is typically a 50 Hz pulse-
width modulated signal. The servo’s control logic drives the shaft to a
position determined by the duty cycle of the control input. The servo’s shaft
encoder is typically a rotary potentiometer that produces a voltage dependent
on the shaft position.

In a typical servo motor with 180 degrees of rotation, a pulse width
of 0.5 ms drives the shaft to 0°, 1.5 ms to 90°, and 2.5 ms to 180°. For
example, Figure e9.38 shows a control signal with a 1.5 ms pulse width.
Driving the servo outside its range may cause it to hit mechanical stops
and be damaged. The servo’s power comes from the power pin rather
than the control pin, so the control can connect directly to a microcon-
troller without an H-bridge. Servo motors are commonly used in
remote-control model airplanes and small robots because they are small,
light, and convenient. Finding a motor with an adequate datasheet can
be difficult. The center pin with a red wire is normally power, and the
black or brown wire is normally ground.

(a) (b)

A

B

Figure e9.36 Shaft encoder (a) disk, (b) quadrature outputs

Figure e9.37 SG90 servo motor

Example e9.13 SERVO MOTOR

Design a system in which a Raspberry Pi drives a servo motor to a desired angle.

Solution: Figure e9.39 shows a diagram of the connection to an SG90 servo motor,
including the colors of the wires on the servo cable. The servo operates off of a
4.0–7.2 V power supply. It can draw as much as 0.5 A if it must deliver a large
amount of force, but may run directly off the Raspberry Pi power supply if the
load is light. A single wire carries the PWM signal, which can be provided at 5
or 3.3 V logic levels. The code configures the PWM generation and computes
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It is also possible to convert an ordinary servo into a continuous rotation
servo by carefully disassembling it, removing themechanical stop, and repla-
cing the potentiometer with a fixed voltage divider. Many websites show
detailed directions for particular servos. The PWMwill then control the velo-
city rather than position, with 1.5 ms indicating stop, 2.5 ms indicating full
speed forward, and 0.5 ms indicating full speed backward. A continuous
rotation servo may be more convenient and less expensive than a simple
DC motor combined with an H-bridge and gear train.

9.4.4.3 Stepper Motor
A stepper motor advances in discrete steps as pulses are applied to alter-
nate inputs. The step size is usually a few degrees, allowing precise posi-
tioning and continuous rotation. Small stepper motors generally come
with two sets of coils called phases wired in bipolar or unipolar fashion.
Bipolar motors are more powerful and less expensive for a given size
but require an H-bridge driver, while unipolar motors can be driven with
transistors acting as switches. This section focuses on the more efficient
bipolar stepper motor.

Figure e9.40(a) shows a simplified two-phase bipolar motor with a 90°
step size. The rotor is a permanent magnet with one north and one south
pole. The stator is an electromagnet with two pairs of coils comprising

the appropriate duty cycle for the desired angle. It cycles through positioning the
servo at 0, 90, and 180 degrees.

#include "EasyPIO.h"
void setServo(float angle) {

setPWM(50.0, 0.025 + (0.1 * (angle / 180)));
}

void main(void) {
pioInit();
pwmInit();
while (1) {

setServo(0.0); // Left
delayMillis(1000);
setServo(90.0); // Center
delayMillis(1000);
setServo(180.0); // Right
delayMillis(1000);

}
}

Raspberry Pi

PWM0 / GPIO18 12

SG90
Servo

5V 4

GND 6

orange

red

brown

Figure e9.39 Servo motor control

20 ms period (50 Hz)

1.5 ms pulse width

Figure e9.38 Servo control waveform
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(a) Wave drive

(b) Two-phase on drive
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Figure e9.41 Bipolar motor drive
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Figure e9.40 Two-phase bipolar
motor: (a) simplified diagram,

(b) symbol

the two phases. Two-phase bipolar motors thus have four terminals.
Figure e9.40(b) shows a symbol for the stepper motor modeling the two
coils as inductors. Practical motors add gearing to reduce the output step
size and increase torque.

Figure e9.41 shows three common drive sequences for a two phase
bipolar motor. Figure e9.41(a) illustrates wave drive, in which the coils
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are energized in the sequence AB – CD – BA – DC. Note that BA means
that the winding AB is energized with current flowing in the opposite
direction; this is the origin of the name bipolar. The rotor turns by 90
degrees at each step. Figure e9.41(b) illustrates two-phase-on drive,
following the pattern (AB, CD) – (BA, CD) – (BA, DC) – (AB, DC).
(AB, CD) indicates that both coils AB and CD are energized simulta-
neously. The rotor again turns by 90 degrees at each step, but aligns itself
halfway between the two pole positions. This gives the highest torque opera-
tion because both coils are delivering power at once. Figure e9.41(c)
illustrates half-step drive, following the pattern (AB, CD) – CD – (BA,
CD) – BA – (BA, DC) – DC – (AB, DC) – AB. The rotor turns by 45 degrees
at each half-step. The rate at which the pattern advances determines the
speed of the motor. To reverse the motor direction, the same drive
sequences are applied in the opposite order.

In a real motor, the rotor has many poles to make the angle between
steps much smaller. For example, Figure e9.42 shows an AIRPAX
LB82773-M1 bipolar stepper motor with a 7.5 degree step size. The
motor operates off 5 V and draws 0.8 A through each coil.

The torque in the motor is proportional to the coil current. This cur-
rent is determined by the voltage applied and by the inductance L and
resistance R of the coil. The simplest mode of operation is called direct vol-
tage drive or L/R drive, in which the voltage V is directly applied to the
coil. The current ramps up to I=V/R with a time constant set by L/R, as
shown in Figure e9.43(a). This works well for slow speed operation. How-
ever, at higher speed, the current doesn’t have enough time to ramp up to
the full level, as shown in Figure e9.43(b), and the torque drops off.

A more efficient way to drive a stepper motor is by pulse-width mod-
ulating a higher voltage. The high voltage causes the current to ramp up
to full current more rapidly, then it is turned off (PWM) to avoid over-
loading the motor. The voltage is then modulated or chopped to maintain
the current near the desired level. This is called chopper constant current
drive and is shown in Figure e9.43(c). The controller uses a small resistor
in series with the motor to sense the current being applied by measuring
the voltage drop, and applies an enable signal to the H-bridge to turn
off the drive when the current reaches the desired level. In principle, a
microcontroller could generate the right waveforms, but it is easier to
use a stepper motor controller. The L297 controller from ST Microelec-
tronics is a convenient choice, especially when coupled with the L298
dual H-bridge with current sensing pins and a 2 A peak power capability.
Unfortunately, the L298 is not available in a DIP package so it is harder
to breadboard. ST’s application notes AN460 and AN470 are valuable
references for stepper motor designers.

Figure e9.42 AIRPAX LB82773-M1
bipolar stepper motor
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Figure e9.43 Bipolar stepper motor direct drive current: (a) slow rotation, (b) fast rotation,
(c) fast rotation with chopper drive

Example e9.14 BIPOLAR STEPPER MOTOR DIRECT WAVE DRIVE

Design a system to drive an AIRPAX bipolar stepper motor at a specified speed
and direction using direct wave drive.

Solution: Figure e9.44 shows the bipolar stepper motor driven directly by an
H-bridge with the same interface as the DC motor. Note that VCC2 must supply
enough voltage and current to meet the motor’s demands or else the motor may
skip steps as the rotation rate increases.

#include "EasyPIO.h"

#define STEPSIZE 7.5
#define SECS_PER_MIN 60
#define MICROS_PER_SEC 1000000
#define DEG_PER_REV 360

int stepperPins[] = {18, 8, 7, 23, 24};
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int curStepState; // Keep track of the current position of stepper motor

void stepperInit(void) {
pinsMode(stepperPins, 5, OUTPUT);
curStepState = 0;

}

void stepperSpin(int dir, int steps, float rpm) {
int sequence[4] = {0b00011, 0b01001, 0b00101, 0b10001}; //{2A, 1A, 4A, 3A, EN}
int step = 0;
unsigned int microsPerStep = (SECS_PER_MIN * MICROS_PER_SEC * STEPSIZE) /

(rpm * DEG_PER_REV);
for (step = 0; step < steps; step++) {

digitalWrites(stepperPins, 5, sequence[curStepState]);
if (dir== 0) curStepState = (curStepState + 1) % 4;
else curStepState = (curStepState + 3) % 4;
delayMicros(microsPerStep);

}
}

void main(void) {
pioInit();
stepperInit();
stepperSpin(1, 12000, 120); // Spin 60 revolutions at 120 rpm

}
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Figure e9.44 Bipolar stepper motor direct drive with H-bridge
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9.5 BUS INTERFACES

A bus interface connects processors to memory and/or peripherals. In gen-
eral, a bus interface supports one or more bus masters that can initiate
read or write requests to the bus and one or more slaves that respond
to the requests; processors are normally masters and memory and periph-
erals are slaves.

The Advanced Microcontroller Bus Architecture (AMBA) is an open
standard bus interface for connecting components on a chip. Introduced
by ARM in 1996, it has developed through multiple revisions to boost
performance and features and has become a de facto standard for
embedded microcontrollers. The Advanced High-performance Bus
(AHB) is one of the AMBA standards. AHB-Lite is a simplified version
of AHB that supports a single bus master. This section describes AHB-
Lite to illustrate the characteristics of a typical bus interface and
to show how to design memory and peripherals that interface to a
standard bus.

9 . 5 . 1 AHB-Lite

Figure e9.45 shows a simple AHB-Lite bus connecting a processor
(bus master) to RAM, ROM, and two peripherals (slaves). Observe that
the bus is very similar to the one from Figure e9.1 except that the names
have changed. The master provides a synchronous clock (HCLK) to all of
the slaves and can reset the slaves by asserting HRESETn low. The master
sends an address. The address decoder uses the most significant bits to
generate the HSEL signal selecting which slave to access, and the slaves
use the least significant bits to define the memory location or register.
The master sends HWDATA for writes. Each slave reads onto its own
HRDATA, and a multiplexer chooses the data from the selected slave.

AHB is an example of a point-
to-point read bus, in contrast
with older bus architectures
that use a single shared data
bus where each slave accesses
the bus via a tristate driver.
Using point-to-point links
between each slave and the
read multiplexer allows the
bus to run faster and avoids
wasting power when one slave
turns on its driver before
another has turned off.

Processor
Master

ROM

HADDR
HWRITE

HWDATA

Address
Decoder

HCLK

HSEL

HRESETn

RAM GPIO TIMER

[0] [1] [2] [3]

HRDATA

HRDATA0

HRDATA3
HRDATA1 HRDATA2

Slave 0 Slave 1 Slave 2 Slave 3

AHB-Lite
Bus

Figure e9.45 AHB-Lite bus
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The master sends a 32-bit address on one cycle and writes or reads
data on the subsequent cycle. The write or read is called a transfer. For
writes, the master raises HWRITE and sends the 32-bit HWDATA to
write. For reads, the master lowers HWRITE and the slave responds with
32-bit HRDATA. Transfers can overlap so that the master can send the
address of the next transfer while reading or writing data for the current
transfer. Figure e9.46 illustrates the timing of the bus for a write followed
immediately by a read. Observe how the data lags one cycle behind the
address and how the two transfers partially overlap.

In this example, we assume the bus transfers a single 32-bit word at a
time and that the slave responds in one clock cycle. AHB-Lite defines
additional signals to specify the size of the transfer (8 – 1024 bits) and
to transfer bursts of 4 to 16 elements. The master can also specify types
of transfers, protection, and bus locking. Slaves can deassert HREADY
to indicate that they need multiple clock cycles to respond, or can assert
HRESP to indicate an error. Interested readers should consult the AMBA
3 AHB-Lite Protocol Specification, available online.

9 . 5 . 2 Memory and Peripheral Interface Example

This section illustrates connecting RAM, ROM, GPIO, and a timer to a
processor over an AHB-Lite bus. Figure e9.47 shows a memory map
for the system from Figure e9.45 with 128 KB of RAM and 64 KB of
ROM. The GPIO controls 32 I/O pins. The 32-bit GPIO_DIR register
controls whether each pin is an output (1) or an input (0). The 32-bit

HADDR[31:0]

HWRITE

HWDATA[31:0]

HCLK

HRDATA[31:0]

Write Address A Read Address B

Write Data A

Read Data B

Cycle 1:
Present Write Address A

Cycle 3:
Receive Read Data B

Cycle 2:
Present Write Data A &

Read Address B

Figure e9.46 AHB-Lite transfer timing
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Figure e9.47 System memory
map

9.5 Bus Interfaces 531.e55



GPIO_PORT register can be written to specify the value of outputs and
read to return the values on the pins. The Timer module resembles the
BCM2835 counter described in Section 9.3.5, containing a 64-bit counter
running at the HCLK frequency (TIMER_CHI:TIMER_CLO), four 32-
bit compare channels (TIMER_C3:0), and a match register (TIMER_CS).

HDL Example e9.1 lists SystemVerilog code for the system. The deco-
der is based on the memory map. The memories and peripherals interface
to the bus. Unnecessary signals are omitted; for example, the ROM
ignores writes. The GPIO module also connects to 32 I/O pins that can
behave as inputs or outputs.

HDL Example e9.1

module ahb_lite(input logic HCLK,
input logic HRESETn,
input logic [31:0] HADDR,
input logic HWRITE,
input logic [31:0] HWDATA,
output logic [31:0] HRDATA,
inout tri [31:0] pins);

logic [3:0] HSEL;
logic [31:0] HRDATA0, HRDATA1, HRDATA2, HRDATA3;
logic [31:0] pins_dir, pins_out, pins_in;
logic [31:0] HADDRDEL;
logic HWRITEDEL;

// Delay address and write signals to align in time with data
flop #(32) adrreg(HCLK, HADDR, HADDRDEL);
flop #(1) writereg(HCLK, HWRITE, HWRITEDEL);

// Memory map decoding
ahb_decoder dec(HADDRDEL, HSEL);
ahb_mux mux(HSEL, HRDATA0, HRDATA1, HRDATA2, HRDATA3,

HRDATA);

// Memory and peripherals
ahb_rom rom (HCLK, HSEL[0], HADDRDEL[15:2], HRDATA0);
ahb_ram ram (HCLK, HSEL[1], HADDRDEL[16:2], HWRITEDEL,

HWDATA, HRDATA1);
ahb_gpio gpio (HCLK, HRESETn, HSEL[2], HADDRDEL[2],

HWRITEDEL, HWDATA, HRDATA2, pins);
ahb_timer timer(HCLK, HRESETn, HSEL[3], HADDRDEL[4:2],

HWRITEDEL, HWDATA, HRDATA3);
endmodule

module ahb_decoder(input logic [31:0] HADDR,
output logic [3:0] HSEL);

// Decode based on most significant bits of the address
assign HSEL[0]=(HADDR[31:16]

==16'h0000); // 64KB ROM at 0x00000000 -
0x0000FFFF

assign HSEL[1]=(HADDR[31:17]
==15'h0001); // 128KB RAM at 0x00020000 -

0x003FFFFF
assign HSEL[2]=(HADDR[31:4]

==28'h2020000); // GPIO at 0x20200000 -
0x20200007

assign HSEL[3]=(HADDR[31:8]
==24'h200030); // Timer at 0x20003000 -

0x2000301B
endmodule

module ahb_mux(input logic [3:0] HSEL,
input logic [31:0] HRDATA0, HRDATA1, HRDATA2,
HRDATA3,
output logic [31:0] HRDATA);

always_comb
casez(HSEL)

4'b???1: HRDATA <= HRDATA0;
4'b??10: HRDATA <= HRDATA1;
4'b?100: HRDATA <= HRDATA2;
4'b1000: HRDATA <= HRDATA3;

endcase
endmodule

module ahb_ram(input logic HCLK,
input logic HSEL,
input logic [16:2] HADDR,
input logic HWRITE,
input logic [31:0] HWDATA,
output logic [31:0] HRDATA);

logic [31:0] ram[32767:0]; // 128KB RAM organized as 32K
x 32 bits

assign HRDATA = ram[HADDR]; // *** check addressing is
correct

always_ff @(posedge HCLK)
if (HWRITE & HSEL) ram[HADDR] <= HWDATA;

endmodule

module ahb_rom(input logic HCLK,
input logic HSEL,
input logic [16:2] HADDR,
output logic [31:0] HRDATA);

logic [31:0] rom[16383:0]; // 64KB ROM organized as 16K x
32 bits

// *** load ROM from disk file

assign HRDATA = rom[HADDR]; // *** check addressing is
correct

endmodule
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9.6 PC I/O SYSTEMS

Personal computers (PCs) use a wide variety of I/O protocols for purposes
including memory, disks, networking, internal expansion cards, and
external devices. These I/O standards have evolved to offer very high per-
formance and to make it easy for users to add devices. These attributes

module ahb_gpio(input logic HCLK,
input logic HRESETn,
input logic HSEL,
input logic [2] HADDR,
input logic HWRITE,
input logic [31:0] HWDATA,
output logic [31:0] HRDATA,
output logic [31:0] pin_dir,
output logic [31:0] pin_out,
input logic [31:0] pin_in);

logic [31:0] gpio[1:0]; // GPIO registers

// write selected register
always_ff @(posedge HCLK or negedge HRESETn)

if (~HRESETn) begin
gpio[0] <= 32'b0; // GPIO_PORT
gpio[1] <= 32'b0; // GPIO_DIR

end else if (HWRITE & HSEL)
gpio[HADDR] <= HWDATA;

// read selected register
assign HRDATA = HADDR ? gpio[1] : pin_in;

// send value and direction to I/O drivers
assign pin_out = gpio[0];
assign pin_dir = gpio[1];

endmodule

module ahb_timer(input logic HCLK,
input logic HRESETn,
input logic HSEL,
input logic [4:2] HADDR,
input logic HWRITE,
input logic [31:0] HWDATA,
output logic [31:0] HRDATA);

logic [31:0] timers[6:0]; // timer registers
logic [31:0] chi, clo; // next counter value
logic [3:0] match, clr; // determine if counter matches

compare reg

// write selected register and update tiers and match
always_ff @(posedge HCLK or negedge HRESETn)

if (~HRESETn) begin
timers[0] <= 32'b0; // TIMER_CS
timers[1] <= 32'b0; // TIMER_CLO
timers[2] <= 32'b0; // TIMER_CHI
timers[3] <= 32'b0; // TIMER_C0
timers[4] <= 32'b0; // TIMER_C1
timers[5] <= 32'b0; // TIMER_C2
timers[6] <= 32'b0; // TIMER_C3

end else begin
timers[0] <= {28'b0, match};

timers[1] < = (HWRITE & HSEL & HADDR = = 3'b000) ?
HWDATA : clo

timers[2] < = (HWRITE & HSEL & HADDR = = 3'b000) ?
HWDATA : chi;

if (HWRITE & HSEL & HADDR = = 3'b011) timers[3] <= HWDATA;
if (HWRITE & HSEL & HADDR = = 3'b100) timers[4] <= HWDATA;
if (HWRITE & HSEL & HADDR = = 3'b101) timers[5] <= HWDATA;
if (HWRITE & HSEL & HADDR = = 3'b110) timers[6] <= HWDATA;

end

// read selected register
assign HRDATA = timers[HADDR];

// increment 64-bit counter as pair of TIMER_CHI, TIMER_CLO
assign {chi, clo} = {timers[2], timers[1]} + 1;

// generate matches: set match bit when counter matches
compare register

// clear bit when a 1 is written to that position of the match
register

assign clr = (HWRITE & HSEL & HADDR = = 3'b000 & HWDATA[3:0]);
assign match[0] = ~clr[0] & (timers[0][0] |

(timers[1] = = timers[3]));
assign match[1] = ~clr[1] & (timers[0][1] |

(timers[1] = = timers[4]));
assign match[2] = ~clr[2] & (timers[0][2] |

(timers[1] = = timers[5]));
assign match[3] = ~clr[3] & (timers[0][3] |

(timers[1] = = timers[6]));
endmodule

module gpio_pins(input logic [31:0] pin_dir, // 1 = output,
0 = input

input logic [31:0] pin_out, // value to drive
on outputs

output logic [31:0] pin_in, // value read
from pins

inout tri [31:0] pin); // tristate pins

// Individual tristate control of each pin

// No graceful way to control tristates on a per-bit basis in
SystemVerilog

genvar i;
generate
for (i= 0; i<32; i= i+ 1) begin: pinloop

assign pin[i] = pin_dir[i] ? pin_out[i] : 1'bz;
end
endgenerate

assign pin_in = pin;
endmodule
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come at the expense of complexity in the I/O protocols. This section
explores the major I/O standards used in PCs and examines some options
for connecting a PC to custom digital logic or other external hardware.

Figure e9.48 shows a PC motherboard for a Core i5 or i7 processor.
The processor is packaged in a land grid array with 1156 gold-plated pads
to supply power and ground to the processor and connect the processor to
memory and I/O devices. The motherboard contains the DRAM memory
module slots, a wide variety of I/O device connectors, and the power
supply connector, voltage regulators, and capacitors. A pair of DRAM
modules are connected over a DDR3 interface. External peripherals such
as keyboards or webcams are attached over USB. High-performance
expansion cards such as graphics cards connect over the PCI Express x16
slot, while lower-performance cards can use PCI Express x1 or the older
PCI slots. The PC connects to the network using the Ethernet jack. The
hard disk connects to a SATA port. The remainder of this section gives
an overview of the operation of each of these I/O standards.

One of the major advances in PC I/O standards has been the develop-
ment of high-speed serial links. Until recently, most I/O was built around
parallel links consisting of a wide data bus and a clock signal. As data rates
increased, the difference in delay among the wires in the bus set a limit to
how fast the bus could run. Moreover, busses connected to multiple devices
suffer from transmission line problems such as reflections and different flight
times to different loads. Noise can also corrupt the data. Point-to-point serial
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Figure e9.48 Gigabyte GA-H55M-
S2V motherboard
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links eliminate many of these problems. The data is usually transmitted on
a differential pair of wires. External noise that affects both wires in the
pair equally is unimportant. The transmission lines are easy to properly
terminate, so reflections are small (see Section A.8 on transmission lines).
No explicit clock is sent; instead, the clock is recovered at the receiver by
watching the timing of the data transitions. High-speed serial link design is
a specialized subject, but good links can run faster than 10 Gb/s over
copper wires and even faster along optical fibers.

9 . 6 . 1 USB

Until the mid-1990s, adding a peripheral to a PC took some technical
savvy. Adding expansion cards required opening the case, setting jumpers
to the correct position, and manually installing a device driver. Adding an
RS-232 device required choosing the right cable and properly configuring
the baud rate, and data, parity, and stop bits. The Universal Serial Bus
(USB), developed by Intel, IBM, Microsoft, and others, greatly simplified
adding peripherals by standardizing the cables and software configuration
process. Billions of USB peripherals are now sold each year.

USB 1.0 was released in 1996. It uses a simple cable with four wires:
5 V, GND, and a differential pair of wires to carry data. The cable is
impossible to plug in backward or upside down. It operates at up to
12 Mb/s. A device can pull up to 500 mA from the USB port, so key-
boards, mice, and other peripherals can get their power from the port
rather than from batteries or a separate power cable.

USB 2.0, released in 2000, upgraded the speed to 480 Mb/s by run-
ning the differential wires much faster. With the faster link, USB became
practical for attaching webcams and external hard disks. Flash memory
sticks with a USB interface also replaced floppy disks as a means of trans-
ferring files between computers.

USB 3.0, released in 2008, further boosted the speed to 5 Gb/s. It uses
the same shape connector, but the cable has more wires that operate at
very high speed. It is well suited to connecting high-performance hard
disks. At about the same time, USB added a Battery Charging Specifica-
tion that boosts the power supplied over the port to speed up charging
mobile devices.

The simplicity for the user comes at the expense of a much more com-
plex hardware and software implementation. Building a USB interface
from the ground up is a major undertaking. Even writing a simple device
driver is moderately complex.

9 . 6 . 2 PCI and PCI Express

The Peripheral Component Interconnect (PCI) bus is an expansion bus
standard developed by Intel that became widespread around 1994. It was

9.6 PC I/O Systems 531.e59



used to add expansion cards such as extra serial or USB ports, network
interfaces, sound cards, modems, disk controllers, or video cards. The 32-
bit parallel bus operates at 33 MHz, giving a bandwidth of 133 MB/s.

The demand for PCI expansion cards has steadily declined. More
standard ports such as Ethernet and SATA are now integrated into the
motherboard. Many devices that once required an expansion card can
now be connected over a fast USB 2.0 or 3.0 link. And video cards now
require far more bandwidth than PCI can supply.

Contemporary motherboards often still have a small number of PCI
slots, but fast devices like video cards are now connected via PCI Express
(PCIe). PCI Express slots provide one or more lanes of high-speed serial
links. In PCIe 3.0, each lane operates at up to 8 Gb/s. Most motherboards
provide an x16 slot with 16 lanes giving a total of 16 GB/s of bandwidth
to data-hungry devices such as video cards.

9 . 6 . 3 DDR3 Memory

DRAM connects to the microprocessor over a parallel bus. In 2015,
the present standard is DDR3, a third generation of double-data rate
memory bus operating at 1.5 V. Typical motherboards now come with
two DDR3 channels so they can simultaneously access two banks of
memory modules. DDR4 is emerging, operating at 1.2V and higher speed.

Figure e9.49 shows a 4 GB DDR3 dual inline memory module
(DIMM). The module has 120 contacts on each side, for a total of 240
connections, including a 64-bit data bus, a 16-bit time-multiplexed
address bus, control signals, and numerous power and ground pins. In
2015, DIMMs typically carry 1–16 GB of DRAM. Memory capacity
has been doubling approximately every 2–3 years.

DRAM presently operates at a clock rate of 100–266 MHz.
DDR3 operates the memory bus at four times the DRAM clock rate.
Moreover, it transfers data on both the rising and falling edges of the
clock. Hence, it sends 8 words of data for each memory clock. At 64
bits/word, this corresponds to 6.4–17 GB/s of bandwidth. For example,
DDR3-1600 uses a 200 MHz memory clock and an 800 MHz I/O clock
to send 1600 million words/sec, or 12800 MB/s. Hence, the modules are

Figure e9.49 DDR3 memory
module
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also called PC3-12800. Unfortunately, DRAM latency remains high, with
a roughly 50 ns lag from a read request until the arrival of the first word
of data.

9 . 6 . 4 Networking

Computers connect to the Internet over a network interface running the
Transmission Control Protocol and Internet Protocol (TCP/IP). The phy-
sical connection may be an Ethernet cable or a wireless Wi-Fi link.

Ethernet is defined by the IEEE 802.3 standard. It was developed at
Xerox Palo Alto Research Center (PARC) in 1974. It originally operated
at 10 Mb/s (called 10 Mbit Ethernet), but now is commonly found at 100
Mbit (Mb/s) and 1 Gbit (Gb/s) running on Category 5 cables containing
four twisted pairs of wires. 10 Gbit Ethernet running on fiber optic cables
is increasingly popular for servers and other high-performance comput-
ing, and 100 Gbit Ethernet is emerging.

Wi-Fi is the popular name for the IEEE 802.11 wireless network stan-
dard. It operates in the 2.4 and 5 GHz unlicensed wireless bands, meaning
that the user doesn’t need a radio operator’s license to transmit in these
bands at low power. Table e9.11 summarizes the capabilities of three gen-
erations of Wi-Fi; the emerging 802.11ac standard promises to push wire-
less data rates beyond 1 Gb/s. The increasing performance comes from
advancing modulation and signal processing, multiple antennas, and
wider signal bandwidths.

9 . 6 . 5 SATA

Internal hard disks require a fast interface to a PC. In 1986, Western Digi-
tal introduced the Integrated Drive Electronics (IDE) interface, which
evolved into the AT Attachment (ATA) standard. The standard uses a
bulky 40 or 80-wire ribbon cable with a maximum length of 18″ to send
data at 16–133 MB/s.

Table e9.11 802.11 Wi-Fi protocols

Protocol Release
Frequency
Band (GHz)

Data Rate
(Mb/s) Range (m)

802.11b 1999 2.4 5.5–11 35

802.11g 2003 2.4 6–54 38

802.11n 2009 2.4/5 7.2–150 70

802.11ac 2013 5 433+ variable
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ATA has been supplanted by Serial ATA (SATA), which uses
high-speed serial links to run at 1.5, 3, or 6 Gb/s over a more convenient
7-conductor cable shown in Figure e9.50. The fastest solid-state
drives in 2015 exceed 500 MB/s of bandwidth, taking full advantage
of SATA.

A related standard is Serial Attached SCSI (SAS), an evolution of the
parallel SCSI (Small Computer System Interface). SAS offers performance
comparable to SATA and supports longer cables; it is common in server
computers.

9 . 6 . 6 Interfacing to a PC

All of the PC I/O standards described so far are optimized for high perfor-
mance and ease of attachment but are difficult to implement in hardware.
Engineers and scientists often need a way to connect a PC to external cir-
cuitry, such as sensors, actuators, microcontrollers, or FPGAs. The serial
connection described in Section 9.3.4.2 is sufficient for a low-speed con-
nection to a microcontroller with a UART. This section describes two
more means: data acquisition systems, and USB links.

9.6.6.1 Data Acquisition Systems
Data Acquisition Systems (DAQs) connect a computer to the real world
using multiple channels of analog and/or digital I/O. DAQs are now com-
monly available as USB devices, making them easy to install. National
Instruments (NI) is a leading DAQ manufacturer.

High-performance DAQ prices tend to run into the thousands of
dollars, mostly because the market is small and has limited competition.
Fortunately, NI sells their handy myDAQ system at a student discount
price of $200 including their LabVIEW software. Figure e9.51 shows
a myDAQ. It has two analog channels capable of input and output

Figure e9.50 SATA cable

Figure e9.51 NI myDAQ
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at 200 ksamples/sec with a 16-bit resolution and ±10 V dynamic range.
These channels can be configured to operate as an oscilloscope and signal
generator. It also has eight digital input and output lines compatible with
3.3 and 5 V systems. Moreover, it generates 5, 15, and −15 V power sup-
ply outputs and includes a digital multimeter capable of measuring vol-
tage, current, and resistance. Thus, the myDAQ can replace an entire
bench of test and measurement equipment while simultaneously offering
automated data logging.

Most NI DAQs are controlled with LabVIEW, NI’s graphical
language for designing measurement and control systems. Some
DAQs can also be controlled from C programs using the LabWindows
environment, from Microsoft .NET applications using the Measurement
Studio environment, or from Matlab using the Data Acquisition Toolbox.

9.6.6.2 USB Links
An increasing variety of products now provide simple, inexpensive digital
links between PCs and external hardware over USB. These products con-
tain predeveloped drivers and libraries, allowing the user to easily write a
program on the PC that blasts data to and from an FPGA or
microcontroller.

FTDI is a leading vendor for such systems. For example, the
FTDI C232HM-DDHSL USB to Multi-Protocol Synchronous Serial
Engine (MPSSE) cable shown in Figure e9.52 provides a USB jack at
one end and, at the other end, an SPI interface operating at up to
30 Mb/s, along with 3.3 V power and four general purpose I/O pins.
Figure e9.53 shows an example of connecting a PC to an FPGA using
the cable. The cable can optionally supply 3.3 V power to the FPGA.
The three SPI pins connect to an FPGA slave device like the one from
Example e9.4. The figure also shows one of the GPIO pins used to drive
an LED.

The PC requires the D2XX dynamically linked library driver to be
installed. You can then write a C program using the library to send data
over the cable.

From PC
USB port

VCC 1(Red)

(Orange)

(Yellow)

(Green)

(Gray)

(Black)

SCK 2

SDO 3

SDI 4

GPIO0 6

GND 10

FPGA

SCK

SDO

SDI

LED 330 Ω

 

Figure e9.53 C232HM-DDHSL USB
to MPSESE interface from PC to
FPGA

Figure e9.52 FTDI USB to MPSSE
cable
(© 2012 by FTDI; reprinted with
permission.)

9.6 PC I/O Systems 531.e63



If an even faster connection is required, the FTDI UM232H module
shown in Figure e9.54 links a PC’s USB port to an 8-bit synchronous
parallel interface operating up to 40 MB/s.

9.7 SUMMARY

Most processors use memory-mapped I/O to communicate with the real
world. Microcontrollers offer a range of basic peripherals including gen-
eral-purpose, serial, and analog I/O and timers. PCs and advanced micro-
controllers support more complex I/O standards including USB, Ethernet,
and SATA.

This chapter has provided many specific examples of I/O using
the Raspberry Pi. Embedded system designers continually encounter new
processors and peripherals. The general principal for simple embedded
I/O is to consult the datasheet to identify the peripherals that are avail-
able and which pins and memory-mapped I/O registers are involved.
Then it is usually straightforward to write a simple device driver that initi-
alizes the peripheral and then transmits or receives data.

For more complex standards such as USB, writing a device driver is a
highly specialized undertaking best done by an expert with detailed
knowledge of the device and the USB protocol stack. Casual designers
should select a processor that comes with proven device drivers and
example code for the devices of interest.

Figure e9.54 FTDI UM232H
module
(© 2012 by FTDI; reprinted with
permission.)
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